clc clear close all %% 阶段-状态定义 stages = 5; nodes_dist = cell(stages-1,3); % 第1阶段 nodes_dist{1,1} = 1; nodes_dist{1,2} = [1,2,3]; nodes_dist{1,3} = [2,5,1]; % 第2阶段 nodes_dist{2,1} = [1;2;3]; nodes_dist{2,2} = [1,2,3]; nodes_dist{2,3} = [12, 14, 10; 6, 10, 4; 13, 12, 11]; % 第3阶段 nodes_dist{3,1} = [1;2;3]; nodes_dist{3,2} = [1,2]; nodes_dist{3,3} = [3, 9; 6, 5; 8, 10]; % 第4阶段 nodes_dist{4,1} = [1;2]; nodes_dist{4,2} = 1; nodes_dist{4,3} = [5; 2]; % 第4阶段 nodes_dist{5,1} = 1; nodes_dist{5,2} = 1; nodes_dist{5,3} = 0; % 最优路径及其距离值定义 path = cell(stages, 1); dist = cell(stages, 1); for i = 1:stages-1 dist{i, 1} = nodes_dist{i,1}; dist{i, 2} = inf(length(dist{i, 1}), 1); path{i, 1} = nodes_dist{i,1}; end dist{stages, 1} = 1; dist{stages, 2} = 0; path{stages, 1} = 1; path{stages, 2} = 1; % 根据最后一个阶段,直接初始化 %% 逆向寻优 % 第一层循环:逆向遍历每一个阶段 for i = stages-1:-1:1 num_states_f = length(nodes_dist{i, 1}); % 第二层循环:遍历第i阶段的每一个状态 for j = 1:num_states_f num_states_r = length(nodes_dist{i+1, 1}); % 第三层循环:遍历第i阶段的第j个状态到第i+1阶段的每一条路径 for k = 1:num_states_r if nodes_dist{i,3}(j,k) + dist{i+1,2}(k,1) < dist{i,2}(j,1) %只保留每种状态的最短路径及最短距离 dist{i,2}(j,1) = nodes_dist{i,3}(j,k) + dist{i+1,2}(k,1); path{i, 2}(j,:) = [j, path{i+1, 2}(k,:)]; end end end end %% 正向求解 path_opt = path(1,1); dist_opt = dist{1,2};
原文:https://www.cnblogs.com/zhjblogs/p/14772048.html