Stream 是 Java8 中处理集合的关键抽象概念,它可以指定你希望对集合进行的操作,可以执行非常复杂的查找、过滤和映射数据等操作。
使用 Stream API 对集合数据进行操作,就类似于使用 SQL 执行的数据库查询。也可以使用 Stream API 来并行执行操作。简而言之,Stream API 提供了一种高效且易于使用的处理数据的方式。
是数据渠道,用于操作数据源(集合、数组等)所生成的元素序列。“集合讲的是数据,流讲的是计算! ”
注意:
import java.util.ArrayList; import java.util.Arrays; import java.util.Iterator; import java.util.List; import java.util.stream.Stream; import org.junit.Test; /* * 一、Stream API 的操作步骤: * * 1. 创建 Stream * * 2. 中间操作 * * 3. 终止操作(终端操作) */ public class TestStreamaAPI { //1. 创建 Stream @Test public void test1() { //1. Collection 提供了两个方法 stream() 与 parallelStream() List<String> list = new ArrayList<>(); Stream<String> stream = list.stream(); //获取一个顺序流 Stream<String> parallelStream = list.parallelStream(); //获取一个并行流 //2. 通过 Arrays 中的 stream() 获取一个数组流 Integer[] nums = new Integer[10]; Stream<Integer> stream1 = Arrays.stream(nums); //3. 通过 Stream 类中静态方法 of() Stream<Integer> stream2 = Stream.of(1, 2, 3, 4, 5, 6); //4. 创建无限流 //迭代 Stream<Integer> stream3 = Stream.iterate(0, (x) -> x + 2).limit(10); stream3.forEach(System.out::println); //生成 Stream<Double> stream4 = Stream.generate(Math::random).limit(2); stream4.forEach(System.out::println); } //2. 中间操作 List<Employee> emps = Arrays.asList( new Employee(102, "李四", 59, 6666.66), new Employee(101, "张三", 18, 9999.99), new Employee(103, "王五", 28, 3333.33), new Employee(104, "赵六", 8, 7777.77), new Employee(104, "赵六", 8, 7777.77), new Employee(104, "赵六", 8, 7777.77), new Employee(105, "田七", 38, 5555.55) ); /* 筛选与切片 filter——接收 Lambda , 从流中排除某些元素。 limit——截断流,使其元素不超过给定数量。 skip(n) —— 跳过元素,返回一个扔掉了前 n 个元素的流。若流中元素不足 n 个,则返回一个空流。与 limit(n) 互补 distinct——筛选,通过流所生成元素的 hashCode() 和 equals() 去除重复元素 */ //内部迭代:迭代操作 Stream API 内部完成 @Test public void test2() { //所有的中间操作不会做任何的处理 Stream<Employee> stream = emps.stream() .filter((e) -> { System.out.println("测试中间操作"); return e.getAge() <= 35; }); //只有当做终止操作时,所有的中间操作会一次性的全部执行,称为“惰性求值” stream.forEach(System.out::println); } //外部迭代 @Test public void test3() { Iterator<Employee> it = emps.iterator(); while (it.hasNext()) { System.out.println(it.next()); } } @Test public void test4() { emps.stream() .filter((e) -> { System.out.println("短路!"); // && || return e.getSalary() >= 5000; }).limit(3) .forEach(System.out::println); } @Test public void test5() { emps.parallelStream() .filter((e) -> e.getSalary() >= 5000) .skip(2) .forEach(System.out::println); } @Test public void test6() { emps.stream() .distinct() .forEach(System.out::println); } }
import java.util.ArrayList; import java.util.Arrays; import java.util.List; import java.util.stream.Stream; import org.junit.Test; /* * 一、 Stream 的操作步骤 * * 1. 创建 Stream * * 2. 中间操作 * * 3. 终止操作 */ public class TestStreamAPI1 { List<Employee> emps = Arrays.asList( new Employee(102, "李四", 59, 6666.66), new Employee(101, "张三", 18, 9999.99), new Employee(103, "王五", 28, 3333.33), new Employee(104, "赵六", 8, 7777.77), new Employee(104, "赵六", 8, 7777.77), new Employee(104, "赵六", 8, 7777.77), new Employee(105, "田七", 38, 5555.55) ); //2. 中间操作 /* 映射 map——接收 Lambda , 将元素转换成其他形式或提取信息。接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。 flatMap——接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流 */ @Test public void test1() { Stream<String> str = emps.stream() .map((e) -> e.getName()); System.out.println("-------------------------------------------"); List<String> strList = Arrays.asList("aaa", "bbb", "ccc", "ddd", "eee"); Stream<String> stream = strList.stream() .map(String::toUpperCase); stream.forEach(System.out::println); Stream<Stream<Character>> stream2 = strList.stream() .map(TestStreamAPI1::filterCharacter); stream2.forEach((sm) -> { sm.forEach(System.out::println); }); System.out.println("---------------------------------------------"); Stream<Character> stream3 = strList.stream() .flatMap(TestStreamAPI1::filterCharacter); stream3.forEach(System.out::println); } public static Stream<Character> filterCharacter(String str) { List<Character> list = new ArrayList<>(); for (Character ch : str.toCharArray()) { list.add(ch); } return list.stream(); } /* sorted()——自然排序 sorted(Comparator com)——定制排序 */ @Test public void test2() { emps.stream() .map(Employee::getName) .sorted() .forEach(System.out::println); System.out.println("------------------------------------"); emps.stream() .sorted((x, y) -> { if (x.getAge() == y.getAge()) { return x.getName().compareTo(y.getName()); } else { return Integer.compare(x.getAge(), y.getAge()); } }).forEach(System.out::println); } }
import java.util.Arrays; import java.util.List; import java.util.Optional; import java.util.stream.Stream; import org.junit.Test; import com.atguigu.java8.Employee.Status; /* * 一、 Stream 的操作步骤 * * 1. 创建 Stream * * 2. 中间操作 * * 3. 终止操作 */ public class TestStreamAPI2 { List<Employee> emps = Arrays.asList( new Employee(102, "李四", 59, 6666.66, Status.BUSY), new Employee(101, "张三", 18, 9999.99, Status.FREE), new Employee(103, "王五", 28, 3333.33, Status.VOCATION), new Employee(104, "赵六", 8, 7777.77, Status.BUSY), new Employee(104, "赵六", 8, 7777.77, Status.FREE), new Employee(104, "赵六", 8, 7777.77, Status.FREE), new Employee(105, "田七", 38, 5555.55, Status.BUSY) ); //3. 终止操作 /* allMatch——检查是否匹配所有元素 anyMatch——检查是否至少匹配一个元素 noneMatch——检查是否没有匹配的元素 findFirst——返回第一个元素 findAny——返回当前流中的任意元素 count——返回流中元素的总个数 max——返回流中最大值 min——返回流中最小值 */ @Test public void test1() { boolean bl = emps.stream() .allMatch((e) -> e.getStatus().equals(Status.BUSY)); System.out.println(bl); boolean bl1 = emps.stream() .anyMatch((e) -> e.getStatus().equals(Status.BUSY)); System.out.println(bl1); boolean bl2 = emps.stream() .noneMatch((e) -> e.getStatus().equals(Status.BUSY)); System.out.println(bl2); } @Test public void test2() { Optional<Employee> op = emps.stream() .sorted((e1, e2) -> Double.compare(e1.getSalary(), e2.getSalary())) .findFirst(); System.out.println(op.get()); System.out.println("--------------------------------"); Optional<Employee> op2 = emps.parallelStream() .filter((e) -> e.getStatus().equals(Status.FREE)) .findAny(); System.out.println(op2.get()); } @Test public void test3() { long count = emps.stream() .filter((e) -> e.getStatus().equals(Status.FREE)) .count(); System.out.println(count); Optional<Double> op = emps.stream() .map(Employee::getSalary) .max(Double::compare); System.out.println(op.get()); Optional<Employee> op2 = emps.stream() .min((e1, e2) -> Double.compare(e1.getSalary(), e2.getSalary())); System.out.println(op2.get()); } //注意:流进行了终止操作后,不能再次使用 @Test public void test4() { Stream<Employee> stream = emps.stream() .filter((e) -> e.getStatus().equals(Status.FREE)); long count = stream.count(); stream.map(Employee::getSalary) .max(Double::compare); } }
import java.util.Arrays; import java.util.DoubleSummaryStatistics; import java.util.HashSet; import java.util.List; import java.util.Map; import java.util.Optional; import java.util.Set; import java.util.stream.Collectors; import org.junit.Test; import com.atguigu.java8.Employee.Status; public class TestStreamAPI3 { List<Employee> emps = Arrays.asList( new Employee(102, "李四", 79, 6666.66, Status.BUSY), new Employee(101, "张三", 18, 9999.99, Status.FREE), new Employee(103, "王五", 28, 3333.33, Status.VOCATION), new Employee(104, "赵六", 8, 7777.77, Status.BUSY), new Employee(104, "赵六", 8, 7777.77, Status.FREE), new Employee(104, "赵六", 8, 7777.77, Status.FREE), new Employee(105, "田七", 38, 5555.55, Status.BUSY) ); //3. 终止操作 /* 归约 reduce(T identity, BinaryOperator) / reduce(BinaryOperator) ——可以将流中元素反复结合起来,得到一个值。 */ @Test public void test1() { List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10); Integer sum = list.stream() .reduce(0, (x, y) -> x + y); System.out.println(sum); System.out.println("----------------------------------------"); Optional<Double> op = emps.stream() .map(Employee::getSalary) .reduce(Double::sum); System.out.println(op.get()); } //需求:搜索名字中 “六” 出现的次数 @Test public void test2() { Optional<Integer> sum = emps.stream() .map(Employee::getName) .flatMap(TestStreamAPI1::filterCharacter) .map((ch) -> { if (ch.equals(‘六‘)) return 1; else return 0; }).reduce(Integer::sum); System.out.println(sum.get()); } //collect——将流转换为其他形式。接收一个 Collector接口的实现,用于给Stream中元素做汇总的方法 @Test public void test3() { List<String> list = emps.stream() .map(Employee::getName) .collect(Collectors.toList()); list.forEach(System.out::println); System.out.println("----------------------------------"); Set<String> set = emps.stream() .map(Employee::getName) .collect(Collectors.toSet()); set.forEach(System.out::println); System.out.println("----------------------------------"); HashSet<String> hs = emps.stream() .map(Employee::getName) .collect(Collectors.toCollection(HashSet::new)); hs.forEach(System.out::println); } @Test public void test4() { Optional<Double> max = emps.stream() .map(Employee::getSalary) .collect(Collectors.maxBy(Double::compare)); System.out.println(max.get()); Optional<Employee> op = emps.stream() .collect(Collectors.minBy((e1, e2) -> Double.compare(e1.getSalary(), e2.getSalary()))); System.out.println(op.get()); Double sum = emps.stream() .collect(Collectors.summingDouble(Employee::getSalary)); System.out.println(sum); Double avg = emps.stream() .collect(Collectors.averagingDouble(Employee::getSalary)); System.out.println(avg); Long count = emps.stream() .collect(Collectors.counting()); System.out.println(count); System.out.println("--------------------------------------------"); DoubleSummaryStatistics dss = emps.stream() .collect(Collectors.summarizingDouble(Employee::getSalary)); System.out.println(dss.getMax()); } //分组 @Test public void test5() { Map<Status, List<Employee>> map = emps.stream() .collect(Collectors.groupingBy(Employee::getStatus)); System.out.println(map); } //多级分组 @Test public void test6() { Map<Status, Map<String, List<Employee>>> map = emps.stream() .collect(Collectors.groupingBy(Employee::getStatus, Collectors.groupingBy((e) -> { if (e.getAge() >= 60) return "老年"; else if (e.getAge() >= 35) return "中年"; else return "成年"; }))); System.out.println(map); } //分区 @Test public void test7() { Map<Boolean, List<Employee>> map = emps.stream() .collect(Collectors.partitioningBy((e) -> e.getSalary() >= 5000)); System.out.println(map); } @Test public void test8() { String str = emps.stream() .map(Employee::getName) .collect(Collectors.joining(",", "----", "----")); System.out.println(str); } @Test public void test9() { Optional<Double> sum = emps.stream() .map(Employee::getSalary) .collect(Collectors.reducing(Double::sum)); System.out.println(sum.get()); } }
import java.util.ArrayList; import java.util.Arrays; import java.util.List; import java.util.Optional; import java.util.stream.Stream; import org.junit.Before; import org.junit.Test; public class TestTransaction { List<Transaction> transactions = null; @Before public void before() { Trader raoul = new Trader("Raoul", "Cambridge"); Trader mario = new Trader("Mario", "Milan"); Trader alan = new Trader("Alan", "Cambridge"); Trader brian = new Trader("Brian", "Cambridge"); transactions = Arrays.asList( new Transaction(brian, 2011, 300), new Transaction(raoul, 2012, 1000), new Transaction(raoul, 2011, 400), new Transaction(mario, 2012, 710), new Transaction(mario, 2012, 700), new Transaction(alan, 2012, 950) ); } //1. 找出2011年发生的所有交易, 并按交易额排序(从低到高) @Test public void test1() { transactions.stream() .filter((t) -> t.getYear() == 2011) .sorted((t1, t2) -> Integer.compare(t1.getValue(), t2.getValue())) .forEach(System.out::println); } //2. 交易员都在哪些不同的城市工作过? @Test public void test2() { transactions.stream() .map((t) -> t.getTrader().getCity()) .distinct() .forEach(System.out::println); } //3. 查找所有来自剑桥的交易员,并按姓名排序 @Test public void test3() { transactions.stream() .filter((t) -> t.getTrader().getCity().equals("Cambridge")) .map(Transaction::getTrader) .sorted((t1, t2) -> t1.getName().compareTo(t2.getName())) .distinct() .forEach(System.out::println); } //4. 返回所有交易员的姓名字符串,按字母顺序排序 @Test public void test4() { transactions.stream() .map((t) -> t.getTrader().getName()) .sorted() .forEach(System.out::println); System.out.println("-----------------------------------"); String str = transactions.stream() .map((t) -> t.getTrader().getName()) .sorted() .reduce("", String::concat); System.out.println(str); System.out.println("------------------------------------"); transactions.stream() .map((t) -> t.getTrader().getName()) .flatMap(TestTransaction::filterCharacter) .sorted((s1, s2) -> s1.compareToIgnoreCase(s2)) .forEach(System.out::print); } public static Stream<String> filterCharacter(String str) { List<String> list = new ArrayList<>(); for (Character ch : str.toCharArray()) { list.add(ch.toString()); } return list.stream(); } //5. 有没有交易员是在米兰工作的? @Test public void test5() { boolean bl = transactions.stream() .anyMatch((t) -> t.getTrader().getCity().equals("Milan")); System.out.println(bl); } //6. 打印生活在剑桥的交易员的所有交易额 @Test public void test6() { Optional<Integer> sum = transactions.stream() .filter((e) -> e.getTrader().getCity().equals("Cambridge")) .map(Transaction::getValue) .reduce(Integer::sum); System.out.println(sum.get()); } //7. 所有交易中,最高的交易额是多少 @Test public void test7() { Optional<Integer> max = transactions.stream() .map((t) -> t.getValue()) .max(Integer::compare); System.out.println(max.get()); } //8. 找到交易额最小的交易 @Test public void test8() { Optional<Transaction> op = transactions.stream() .min((t1, t2) -> Integer.compare(t1.getValue(), t2.getValue())); System.out.println(op.get()); } } //交易员类 @Data public class Trader { private String name; private String city; public Trader() { } public Trader(String name, String city) { this.name = name; this.city = city; } } //交易类 @Data public class Transaction { private Trader trader; private int year; private int value; public Transaction() { } public Transaction(Trader trader, int year, int value) { this.trader = trader; this.year = year; this.value = value; } }
原文:https://www.cnblogs.com/jwen1994/p/14769315.html