https://blog.csdn.net/mappy93/article/details/79319506/
10/May 2016
| Count | Mt | Sp | Value | |
|---|---|---|---|---|
| 0 | 3 | s1 | a | 1 |
| 1 | 2 | s1 | b | 2 |
| 2 | 5 | s2 | c | 3 |
| 3 | 10 | s2 | d | 4 |
| 4 | 10 | s2 | e | 5 |
| 5 | 6 | s3 | f | 6 |
df.groupby(‘Mt‘).apply(lambda t: t[t.Count==t.Count.max()])
| Count | Mt | Sp | Value | ||
|---|---|---|---|---|---|
| Mt | |||||
| s1 | 0 | 3 | s1 | a | 1 |
| s2 | 3 | 10 | s2 | d | 4 |
| 4 | 10 | s2 | e | 5 | |
| s3 | 5 | 6 | s3 | f | 6 |
| Count | Mt | Sp | Value | |
|---|---|---|---|---|
| 0 | 3 | s1 | a | 1 |
| 3 | 10 | s2 | d | 4 |
| 4 | 10 | s2 | e | 5 |
| 5 | 6 | s3 | f | 6 |
上面的方法都有个问题是3、4行的值都是最大值,这样返回了多行,如果只要返回一行呢?
| Count | Mt | Sp | Value | |
|---|---|---|---|---|
| 0 | 3 | s1 | a | 1 |
| 3 | 10 | s2 | d | 4 |
| 5 | 6 | s3 | f | 6 |
| Count | Mt | Sp | Value | |
|---|---|---|---|---|
| 0 | 3 | s1 | a | 1 |
| 3 | 10 | s2 | d | 4 |
| 5 | 6 | s3 | f | 6 |
| Mt | Value | |
|---|---|---|
| 0 | s1 | 1 |
| 3 | s2 | 4 |
| 5 | s3 | 6 |
df.sort(‘Count‘, ascending=False).groupby(‘Mt‘, as_index=False).first()
| Mt | Count | Sp | Value | |
|---|---|---|---|---|
| 0 | s1 | 3 | a | 1 |
| 1 | s2 | 10 | d | 4 |
| 2 | s3 | 6 | f | 6 |
思路还是类似,可能具体写法上要做一些修改,比如方法1和2要修改max算法,方法3要自己实现一个返回index的方法。 不管怎样,groupby之后,每个分组都是一个dataframe。
原文:https://www.cnblogs.com/gina11/p/14777684.html