大概4月,Flink1.13就发布了,参加 了Flink1.13 的Meetup,收获还是挺多,从大的方面讲就是FlingSql的改进和优化,资源调度管理方面的优化,以及流批一体Flink在运行时与DataStream API的优化,另外就是State backend 模块的优化,本篇文章既是当时做的笔记,又是在后续查阅官网等做的补充,
Flink 的一个主要目标取得了重要进展,即让流处理应用的使用像普通应用一样简单和自然。Flink 1.13 新引入的被动扩缩容使得流作业的扩缩容和其它应用一样简单,使用者仅需要修改并行度即可。
这个版本还包括一系列重要改动使使用者可以更好理解流作业的效能。当流作业的效能不及预期的时候,这些改动可以使使用者可以更好的分析原因。这些改动包括用于识别瓶颈节点的负载和反压视觉化、分析运算元热点程式码的 CPU 火焰图和分析 State Backend 状态的 State 存取效能指标
在刚刚发布的 1.13 版本中,Flink SQL 带来了许多新 feature 和功能提升,在这里围绕 Winddow TVF,时区支持,DataStream & Table API 交互,hive 兼容性提升,SQL Client 改进 五个方面
flip-145 window tvf
window 性能优化
flip-162时区分析
flip-163 改进sql-client,hive兼容性
flip-136 增强datastrem 和 table的转换
Flink 1.13 新增了被动资源管理模式与自适应调度模式,具备灵活的伸缩能力,与云原生的自动伸缩技术相结合,能够更好地发挥云环境下弹性计算资源的优势,是 Flink 全面拥抱云原生技术生态的又一重要里程碑。本次议题将对 Flink 1.13 中的被动资源管理、自适应调度、自定义容器模板等新特性,我觉得这个的扩展才是Flink此次版本特别重要的一个feature
在 1.13 中,针对流批一体的目标,Flink 优化了大规模作业调度以及批执行模式下网络 Shuffle 的性能,从而进一步提高了流作业与批作业的执行性能;同时,在 DataStream API 方面,Flink也正在完善有限流作业的退出语义,从而进一步提高不同执行模式下语义与结果的一致性
api下面的shuffle架构实现
更多可以查看Flink官网 https://ci.apache.org/projects/flink/flink-docs-release-1.13/release-notes/flink-1.13/
参考部分:https://tw511.com/a/01/34869.html
吴邪,小三爷,混迹于后台,大数据,人工智能领域的小菜鸟。
更多请关注
原文:https://www.cnblogs.com/goophp/p/14800378.html