首页 > 其他 > 详细

Hadoop概念

时间:2021-05-23 22:42:57      阅读:17      评论:0      收藏:0      [点我收藏+]

Hadoop是分布式系统基础架构,通常指Hadoop生态圈

主要解决
1.海量数据的存储
2.海量数据的分析计算

优势

  • 高可靠性:Hadoop底层维护多个数据副本,即使Hadoop某个计算元素或存储出现故障,也不会导致数据的丢失
  • 高扩展性:在集群间分配任务数据,方便动态(原来的继续运行)增加删除节点
  • 高效性:在MapReduce的思想下,Hadoop是并行工作的,加快处理速度
  • 高容错性:能够自动将失败的任务重新分配

Hadoop组成

版本区别

资源调度:内存、CPU分配等

解耦+模块化

技术分享图片

Hadoop3.x在组成上没有变化

HDFS架构概述

Hadoop Distributed File System(HDFS)分布式文件系统

NameNode(nn):存储文件的元数据,如文件名、文件目录结构、文件属性,以及每个文件的块列表和块所在的DataNode(数据都存储在什么位置)等

DataNode(dn):在本地文件系统存储文件块数据(具体存储数据),以及块数据的校验和

Secondary NameNode(2nn):每隔一段时间对NameNode元数据备份,可以恢复NameNode的一部分工作

YARN架构概述

技术分享图片

MapReduce架构概述

MapReduce将计算过程分为两个阶段:Map和Reduce
1.Map阶段并行处理输入数据 –> 负责大任务分小任务
2.Reduce阶段对Map结果进行汇总 –> 负责汇总结果

大数据技术生态体系

技术分享图片

图示补充:
1.数据计算层中MapReduce与Spark Core是离线,离线的主要处理日统计、月统计等。
2.Flink框架在数据计算层
3.内存计算数据快,断电数据缺失
4.Hive与Spark Sql主要都是通过写sql实现分析计算的过程
5.Storm(慢慢过时)实时计算,数据来了就算;SparkStreaming(常用)实时计算是准实时,按批处理数据。

案列

比如jd首页

买书行为被记录下来 --> Nginx ---> Tomcat收集访问日志 --> Flume日志收集 --> kafka消息队列进行缓冲 --> 实时计算

Hadoop概念

原文:https://www.cnblogs.com/rananie/p/14801529.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!