首页 > 其他 > 详细

sklearn中,数据集划分函数 StratifiedShuffleSplit.split() 使用踩坑

时间:2021-05-28 09:49:07      阅读:23      评论:0      收藏:0      [点我收藏+]

在SKLearn中,StratifiedShuffleSplit 类实现了对数据集进行洗牌、分割的功能。但在今晚的实际使用中,发现该类及其方法split()仅能够对二分类样本有效。

一个简单的例子如下:

 1 import numpy as np
 2 from sklearn.model_selection import StratifiedShuffleSplit
 3 
 4 l4 = np.array([[1,2],[3,4],[1,4],[3,5]])
 5 l5 = np.array([0,1,0,2])
 6 splt = StratifiedShuffleSplit(n_splits=1,test_size=0.5,random_state=1)
 7 for train_idx, valid_idx in splt.split(l4, l5):
 8     print(train_idx,valid_idx)
 9 print(=======)
10 print(l4[train_idx],l4[valid_idx])
11 print(=======)
12 print(l5[train_idx],l5[valid_idx])

l4 为样本输入列表,l5 为样本输出列表,其中,样本输出(l5)共有3类:[0,1,2] 此时,运行程序会报错:

ValueError: The least populated class in y has only 1 member, which is too few. The minimum number of groups for any class cannot be less than 2.

技术分享图片

 

 报错信息的字面意思是:我样本输出仅有1类,需要最少2类。但问题是我实际上有3类输出样本。这个问题百度了半天也没找到合适的解答。

后面将3类样本改为2类,该函数就能正常运行了。

 1 import numpy as np
 2 from sklearn.model_selection import StratifiedShuffleSplit
 3 
 4 l4 = np.array([[1,2],[3,4],[1,4],[3,5]])
 5 l5 = np.array([0,1,0,1])
 6 splt = StratifiedShuffleSplit(n_splits=1,test_size=0.5,random_state=1)
 7 for train_idx, valid_idx in splt.split(l4, l5):
 8     print(train_idx,valid_idx)
 9 print(=======)
10 print(l4[train_idx],l4[valid_idx])
11 print(=======)
12 print(l5[train_idx],l5[valid_idx])

注意,在上方代码第5行,将 l5 的值进行修改,样本输出仅有[0,1]两类。

此时运行程序,运行无误。

技术分享图片

 

 StratifiedShuffleSplit.split() 函数对于多分类问题还是无法正确适配。

 

sklearn中,数据集划分函数 StratifiedShuffleSplit.split() 使用踩坑

原文:https://www.cnblogs.com/NosenLiu/p/14820156.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!