#include<bits/stdc++.h>
const long long inf=2147483647;
const int maxn=10005;
const int maxm=500005;
using namespace std;
int n,m,s,num_edge=0;
int dis[maxn],vis[maxn],head[maxm];
struct Edge
{
int next,to,dis;
}edge[maxm]; //结构体表示静态邻接表
void addedge(int from,int to,int dis) //邻接表建图
{ //以下是数据结构书上的标准代码,不懂翻书看解释
edge[++num_edge].next=head[from]; //链式存储下一条出边
edge[num_edge].to=to; //当前节点编号
edge[num_edge].dis=dis; //本条边的距离
head[from]=num_edge; //记录下一次的出边情况
}
void spfa()
{
queue<int> q; //spfa用队列,这里用了STL的标准队列
for(int i=1; i<=n; i++)
{
dis[i]=inf; //带权图初始化
vis[i]=0; //记录点i是否在队列中,同dijkstra算法中的visited数组
}
q.push(s); dis[s]=0; vis[s]=1; //第一个顶点入队,进行标记
while(!q.empty())
{
int u=q.front(); //取出队首
q.pop(); vis[u]=0; //出队标记
for(int i=head[u]; i; i=edge[i].next) //邻接表遍历,不多解释了(也可用vector代替)
{
int v=edge[i].to;
if(dis[v]>dis[u]+edge[i].dis) //如果有最短路就更改
{
dis[v]=dis[u]+edge[i].dis;
if(vis[v]==0) //未入队则入队
{
vis[v]=1; //标记入队
q.push(v);
}
}
}
}
}
int main()
{
cin>>n>>m>>s;
for(int i=1; i<=m; i++)
{
int f,g,w;
cin>>f>>g>>w;
addedge(f,g,w); //建图,有向图连一次边就可以了
}
spfa(); //开始跑spfa
for(int i=1; i<=n; i++)
if(s==i) cout<<0<<" "; //如果是回到自己,直接输出0
else cout<<dis[i]<<" "; //否则打印最短距离
return 0;
} //结束
若判负环 则判断点数入队若超过n次 则有负环
原文:https://www.cnblogs.com/donkey9/p/14849990.html