对于任给的一个意见(\(a\)同学比\(b\)同学高)转化为: 存在一条由\(a\)到\(b\)的权重为\(1\)的有向边
构建一个图, 经过拓扑排序, 保证图中每一个点在其前驱点入队前不会入队.
对应本题就是:保证每一个同学能够满足所有的不等式。
#include <iostream>
#include <cstring>
#include <queue>
#include <string>
using namespace std;
const int N = 1e5 + 10;
const int M = 2 * N;
int h[N], e[M], ne[M], idx, w[M];
int dist[N];
int din[N];
void add(int a, int b, int v)
{
e[idx] = b, ne[idx] = h[a], w[idx] = v, h[a] = idx++;
}
int main()
{
int n, m;
cin >> n >> m;
memset (h, -1, sizeof h);
queue<int> q;
for (int i = 1; i <= m; i ++ ){
int a, b;
cin >> a >> b;
add(b, a, 1);
din[a]++;
}
for (int i = 1; i <= n; i ++ )
if (!din[i]){
q.push(i);
}
while (q.size()){
int u = q.front();
q.pop();
for (int i = h[u]; i != -1; i = ne[i]){
int j = e[i];
if (dist[j] <= dist[u] + w[i])
dist[j] = dist[u] + w[i];
din[j]--;
if (!din[j])
q.push(j);
}
}
long long ans = 100 * n;
for (int i = 1; i <= n; i ++ )
if (din[i]){
puts("impossible");
return 0;
}else
ans += dist[i];
cout << ans << endl;
return 0;
}
问题转化为不等式: \(a > b + 1\)
对于每一个不等式, 构建一条\(b\) 到 \(a\)的边, 再构建一个到所有点的虚拟原点.
问题要求最小值, 用\(spfa\)求最长路.
注意: 需要用\(spfa\)判环(该题是判正环), 使用队列可能TLE(本题使用队列被卡), 可将队列换成栈.
#include <iostream>
#include <cstring>
#include <queue>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std;
const int N = 2e5 + 10;
const int M = 2 * N;
int dist[N];
int cnt[N];
int h[N], e[M], ne[M], w[M], idx;
int st[N];
int n, m;
void add(int a, int b, int v)
{
e[idx] = b, w[idx] = v, ne[idx] = h[a], h[a] = idx++;
}
int spfa()
{
memset(dist, -1, sizeof dist);
dist[0] = 0;
stack<int> q;
q.push(0);
st[0] = 1;
while (q.size()){
int u = q.top();
q.pop();
st[u] = 0;
for (int i = h[u]; i != -1; i = ne[i]){
int j = e[i];
if (dist[j] < dist[u] + w[i]){
dist[j] = dist[u] + w[i];
cnt[j] += 1;
if (cnt[j] > n + 1)
return 1;
if (!st[j]){
q.push(j);
st[j] = 1;
}
}
}
}
return 0;
}
int main()
{
cin >> n >> m;
memset(h, -1, sizeof h);
for (int i = 1; i <= m; i ++ ){
int a, b;
scanf("%d%d", &a, &b);
add(b, a, 1);
}
for (int i = 1; i <= n; i ++ )
add(0, i, 0);
if (spfa())
puts("impossible");
else{
long long ans = 0;
for (int i = 1; i <= n; i ++ )
ans += dist[i];
ans += 100 * n;
cout << ans << endl;
}
return 0;
}
原文:https://www.cnblogs.com/lhqwd/p/14854614.html