主类:
public class FloydAlgorithm {
public static void main(String[] args) {
char[] vertex = { ‘A‘, ‘B‘, ‘C‘, ‘D‘, ‘E‘, ‘F‘, ‘G‘ };
int[][] matrix = new int[vertex.length][vertex.length];
final int N = 65535;
matrix[0] = new int[] { 0, 5, 7, N, N, N, 2 };
matrix[1] = new int[] { 5, 0, N, 9, N, N, 3 };
matrix[2] = new int[] { 7, N, 0, N, 8, N, N };
matrix[3] = new int[] { N, 9, N, 0, N, 4, N };
matrix[4] = new int[] { N, N, 8, N, 0, 5, 4 };
matrix[5] = new int[] { N, N, N, 4, 5, 0, 6 };
matrix[6] = new int[] { 2, 3, N, N, 4, 6, 0 };
Graph graph = new Graph(vertex.length, matrix, vertex);
graph.floyd();
graph.show();
}
}
Graph类:
class Graph{
private char[] vertex;//存放顶点的数组
private int[][] dis;//保存从各个顶点出发到其他顶点的距离
private int[][] pre;//保存到达目标顶点的前驱顶点
//构造器与初始化
public Graph(int length, int[][] matrix, char[] vertex) {
this.vertex = vertex;
this.dis = matrix;
this.pre = new int[length][length];
for(int i = 0; i < length; i++) {
Arrays.fill(pre[i], i);
}
}
/**
* 第一行显示各个顶点到其他顶点的前驱节点,第二行显示到达其他顶点的距离
*/
public void show() {
for(int k = 0; k < dis.length; k++) {
for(int i = 0; i < dis.length; i++) {
System.out.print(vertex[pre[k][i]] + " ");
}
System.out.println();
for(int i = 0; i < dis.length; i++) {
System.out.print(dis[k][i] + " ");
}
System.out.println();
}
}
//弗洛伊德算法
public void floyd() {
int len = 0;//保存距离
//对中间顶点遍历,k就是中间顶点的下标
for(int k = 0; k < dis.length; k++) {
//从i顶点开始出发
for(int i = 0; i < dis.length; i++) {
for(int j = 0; j < dis.length; j++) {
len = dis[i][k] + dis[k][j];
if(len < dis[i][j]) {
dis[i][j] = len;//更新最短距离
pre[i][j] = pre[k][j];//更新前驱顶点
}
}
}
}
}
}
原文:https://www.cnblogs.com/shanaprprpr/p/14861375.html