不得不说阅读源码的过程,极其痛苦 。Dream Car 镇楼 ~ !
虽说整个MapReduce过程也就只有Map阶段和Reduce阶段,但是仔细想想,在Map阶段要做哪些事情?这一阶段具体应该包含数据输入(input),数据计算(map),数据输出(output),这三个步骤的划分是非常符合思维习惯的。
从大数据开发的hello world
案例入手,如下是一个word count
案例的map
程序
public class WcMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
private Text k = new Text();
private IntWritable v = new IntWritable(1);
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//1. 获取一行数据
String str = value.toString();
//2. 按照空格分开单词
String[] words = str.split(" ");
//3. 遍历集合,拼装成(word,one)形式
for (String word : words) {
this.k.set(word);
context.write(k, v);
}
}
}
自定义的WcMapper
类继承了Mapper
类,重写了map()
方法,在这个方法里我们按照需求,编写了相应的业务逻辑。进入Mapper
类中查看。
这个类包含的方法并不多,并且比较符合见名知义的思维规律,可以根据方法辅助注释大概了解其具体功能。在这个类的头上还包括一段对类的描述性注释,大致意思就是map阶段到底干了什么,尝试简单翻译一下核心内容
- 将输入键/值对映射到一组中间键/值对。
- 映射是将输入记录转换为中间记录的单个任务。 转换后的中间记录不需要与输入记录的类型相同。 一个给定的输入对可以映射到零个或多个输出对。
- Hadoop Map-Reduce 框架为InputFormat为作业生成的每个InputSplit生成一个映射任务。 Mapper实现可以通过JobContext.getConfiguration()访问作业的Configuration 。
- 框架首先调用setup(Mapper.Context) ,然后为InputSplit中的每个键/值对调用map(Object, Object, Mapper.Context) 。 最后调用cleanup(Mapper.Context) 。
- 与给定输出键关联的所有中间值随后由框架分组,并传递给Reducer以确定最终输出。 用户可以通过指定两个关键的RawComparator类来控制排序和分组。
- Mapper输出按Reducer进行分区。 用户可以通过实现自定义Partitioner来控制哪些键(以及记录)去哪个Reducer 。
- 用户可以选择通过Job.setCombinerClass(Class)指定combiner来执行中间输出的本地聚合,这有助于减少从Mapper传输到Reducer的数据量。
- 应用程序可以指定是否以及如何压缩中间输出,以及通过Configuration使用哪些CompressionCodec 。
如果作业有零减少,则Mapper的输出将直接写入OutputFormat而不按键排序。
public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
public abstract class Context implements MapContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> {}
protected void setup(Context context ) throws IOException, InterruptedException {}
protected void map(KEYIN key, VALUEIN value,Context context) throws IOException, InterruptedException
{context.write((KEYOUT) key, (VALUEOUT) value);}
protected void cleanup(Context context) throws IOException, InterruptedException {}
public void run(Context context) throws IOException, InterruptedException {
setup(context);
try {
while (context.nextKeyValue()) {
map(context.getCurrentKey(), context.getCurrentValue(), context);
}
} finally {
cleanup(context);
}
}
}
看到run(Context context)
这个方法就比较有框架的感觉了,这个方法里面调用了一次setup(context)
和cleanup(context)
,而对map
方法则为输入拆分中的每个键/值对调用一次。
这个类看到这也就算结束了,其它的也看不出啥东西了。进入MapTask
类,包含了大量的核心业务逻辑方法。这个类会被Yarn反射调用run方法,实例化MapTask。直接进run
方法,删除了部分非核心代码,清清爽爽。
@Override
public void run(final JobConf job, final TaskUmbilicalProtocol umbilical){
this.umbilical = umbilical;
if (isMapTask()) {
// reduce的个数为 0,所以整个任务只有map阶段
if (conf.getNumReduceTasks() == 0) {
mapPhase = getProgress().addPhase("map", 1.0f);
} else {
// 如果有reduce阶段,将进行进度分配
mapPhase = getProgress().addPhase("map", 0.667f);
// 排序环节让后续的reduce环节变得更轻松完成,只需拉取一次文件,减少I/O
sortPhase = getProgress().addPhase("sort", 0.333f);
}
}
TaskReporter reporter = startReporter(umbilical);
boolean useNewApi = job.getUseNewMapper();
initialize(job, getJobID(), reporter, useNewApi);
// check if it is a cleanupJobTask
.........
if (useNewApi) { // 新旧API的选择
// 进这个方法
runNewMapper(job, splitMetaInfo, umbilical, reporter);
} else {
runOldMapper(job, splitMetaInfo, umbilical, reporter);
}
done(umbilical, reporter);
}
继续进入runNewMapper(job, splitMetaInfo, umbilical, reporter)
方法。里边有点长啊,一下不好找到重点。小常识:重要的东西放在try-catch
中!! 所以首先看try-catch
块。
private <INKEY,INVALUE,OUTKEY,OUTVALUE>
void runNewMapper(final JobConf job,final TaskSplitIndex splitIndex,final TaskUmbilicalProtocol umbilical,TaskReporter reporter) {
............先删了,略过不看............
// 用人类的思维过一遍方法名
try {
// 1、初始化输入流
input.initialize(split, mapperContext);
// 2、直觉调用这个run()方法,最终会调用到自定义的map方法
mapper.run(mapperContext);
// 3、完成map计算阶段
mapPhase.complete();
// 4、排序阶段走起
setPhase(TaskStatus.Phase.SORT);
// 5、状态信息更新或者传递(猜的)
statusUpdate(umbilical);
// 6、关闭输入流
input.close();
input = null;
// 7、进入到out阶段,输出map数据
output.close(mapperContext);
output = null;
} finally {
// Quietly,默默的做一些事情 ...
closeQuietly(input);
closeQuietly(output, mapperContext);
}
}
这样一来整个思路就就很丝滑顺畅了,回过头来看删除掉的代码片段 ,原注释信息也蛮好懂的。
// 1、make a task context so we can get the classes 封装任务的上下文,job里有configuration
// 常识:在框架中上下文对象是不可缺少的,有些信息在业务线来回穿梭,封装进上下文可以随时获取
// 回忆:客户端上传任务到资源层,其中包括Jar包,配置文件,切片三个文件,container拿到可以实例化job
org.apache.hadoop.mapreduce.TaskAttemptContext taskContext =
new org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl(job, getTaskID(),reporter);
// 2、make a mapper:根据taskContext + job,实例化出来一个mapper对象
org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE> mapper =
(org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>)
// 就是自己写的WCMapper对象,也就对应了下边的 mapper.run(mapperContext)。丝滑~!
ReflectionUtils.newInstance(taskContext.getMapperClass(), job);
// 3、make the input format:输入格式化,为啥需要这个玩意?split是一片数据,那读一条数据就要这玩意了
org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE> inputFormat =
(org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE>)
// 在写job配置的时候,其实是可以指定InputFormat哒,默认是TextInputFormat
ReflectionUtils.newInstance(taskContext.getInputFormatClass(), job);
// 4、rebuild the input split,每个map都要确定自己往哪个split移动
org.apache.hadoop.mapreduce.InputSplit split = null;
// 每个mapper都要搞搞清楚自己要读取哪个split 【计算向数据移动】
split = getSplitDetails(new Path(splitIndex.getSplitLocation()),
splitIndex.getStartOffset());
// 5、input = split + inputFormat (父类是RecordReader)
org.apache.hadoop.mapreduce.RecordReader<INKEY,INVALUE> input =
new NewTrackingRecordReader<INKEY,INVALUE>
// 所以input有能力在split读取出来一条条的记录
(split, inputFormat, reporter, taskContext);
// 小总结:3、4、5 三步要做的就是——想个办法在Split中读取一条数据
//--------------------NewTrackingRecordReader() begin-------------------------------
private final org.apache.hadoop.mapreduce.RecordReader<K,V> real;
NewTrackingRecordReader(...){
.....
// 调用TextInputFormat的createRecordReader,返回一个LineRecordReader对象
// 所以input就是一个LineRecordReader对象
this.real = inputFormat.createRecordReader(split, taskContext);
.....
}
//--------------------NewTrackingRecordReader() end--------------------------------
...........先略过输出这一部分...........
// 6、上面是任务上下文,这里是map上下文,包含了input、output、split
org.apache.hadoop.mapreduce.MapContext<INKEY, INVALUE, OUTKEY, OUTVALUE>
mapContext =
new MapContextImpl<INKEY, INVALUE, OUTKEY, OUTVALUE>(job, getTaskID(),
input, output,
committer,
reporter, split);
// 7、又对map上下文包装了一层mapperContext,包含了input、output、split
// 这不就是Mapper类中的run(Context context)的入参嘛 ~!!
org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>.Context
mapperContext =
new WrappedMapper<INKEY, INVALUE, OUTKEY, OUTVALUE>().getMapContext(
mapContext);
//-------------Mapper::run(Context context) begin ----------------------------------
public void run(Context context) throws IOException, InterruptedException {
setup(context);
try {
// 从mapper的上下文里判断有无下一条数据
while (context.nextKeyValue()) {
// 取出切片中的下一条数据进行计算
map(context.getCurrentKey(), context.getCurrentValue(), context);
}
} finally {
cleanup(context);
}
}
// 从map的上下文信息中是如何获取到一条数据的?LineRecordReader返回的~~ 层层封装真绝了
//-------------Mapper::run(Context context) end ----------------------------------
现在可以回头看try块中的 input.initialize(split, mapperContext)
的方法,进去看方法实现的细节。数据在HDFS层会被切割开,那么它能被计算正确是如何实现的? 在这就有相应的实现代码不复杂,但是有小亮点。
只保留核心业务逻辑,还是该删的删,清清爽爽,开开心心阅读源码 ~
// 记住这是Recordreader的初始化方法
public void initialize(InputSplit genericSplit,TaskAttemptContext context) {
// map任务计算是面向切片的,先拿到切片,再拿到切片的始端
start = split.getStart();
// 始端 + 切片大小,得到末端
end = start + split.getLength();
// 从切片中拿到文件路径
final Path file = split.getPath();
// open the file and seek to the start of the split
// 获取到文件系统的一个对象
final FileSystem fs = file.getFileSystem(job);
//打开文件,会得到一个面向文件的输入流
// 各个map并行执行,所以不会都是从文件头开始读,所以它要搭配一个seek()方法
fileIn = fs.open(file);
if (...) {
......
} else {
// 每个map 都会seek到自己切片偏移量的位置开始读取数据
fileIn.seek(start);
// SplitLineReader:切片里的行记录读取器。这名字一看就很面向对象
in = new SplitLineReader(fileIn, job, this.recordDelimiterBytes);
filePosition = fileIn;
}
// If this is not the first split, we always throw away first record
// because we always (except the last split) read one extra line in
// next() method.
// 如果这不是第一次拆分,我们总是丢弃第一条记录。
// 因为我们总是(除了最后一次拆分)在 next() 方法中读取额外的一行。
// 这就防止了 hello 被拆成了 he llo 导致计算错误
if (start != 0) {
start += in.readLine(new Text(), 0, maxBytesToConsume(start));
}
this.pos = start;
}
in.readLine(new Text(), 0, maxBytesToConsume(start))
这个方法把读到的一行数据交给一个Text
对象持有,返回值是一个int
类型的数值,表示读到了多少个字节。
注意到方法传参new Text()
对象,当方法执行完是时候,这个对象会因为没有引用被GC回收。那么既然没有引用,它在干嘛?
回忆:切片是一个逻辑切分,默认的大小是一个block块的大小。假如一个split小于block ,这个block就会被切成多个部分。如果就是尼玛那么寸, hello 两个切片被拆成了 he llo 两部分,就会导致计算错误。这时候向下多读一行,哎,这个问题就解决啦。
再回头说:计算向数据移动。被多读的一行如果在其它的节点怎么办?答:把这一行数据传过来,不必移动计算。
其实看到这里也就可以明白了,在整个Map的input环节,真正干读取数据活的是LineRecordReader
,key
就是面向行的字节偏移量。下边这段代码已经出现多次了
public void run(Context context) throws IOException, InterruptedException {
setup(context);
try {
// 从mapper的上下文里判断有无下一条数据
while (context.nextKeyValue()) {
// 取出切片中的下一条数据进行计算
map(context.getCurrentKey(), context.getCurrentValue(), context);
}
} finally {
cleanup(context);
}
}
通过阅读上边的源码我们已经知道此处传参Context
实际上就是一个MapContextImpl
对象,context.nextKeyValue()
方法也就是在调用LineRecordReader::nextKeyValue()
方法。这个方法内部:会对key-value进行赋值,返回boolean
值,代表是否赋值成功。总体下来可以说是感觉非常的丝滑~
总结:(我自己能看懂就行了~)
MapTask:input -> map -> output
intput:(Split + format)来自于输入格式化类返回记录读取器对象
TextInputFormat - > LineRecordReader:
Split三个维度:file , offset , length
init():in = fs.open(file).seek。除了第一个切片,都会往下多读一行。
nextKeyValue():
1、读取数据中的一条记录对应的key,value 赋值;
2、返回布尔值;
getCurrentKey()
getCurrentValue()
MapReduce —— MapTask阶段源码分析(Input环节)
原文:https://www.cnblogs.com/simon-1024/p/14872322.html