首页 > 其他 > 详细

有关Chauchy-Schwarz不等式的例题

时间:2021-06-16 11:40:03      阅读:37      评论:0      收藏:0      [点我收藏+]

例:设 f(x) 在 [a, b] 上可微, 且 f′∈R([a, b]), 则存在M,对于任意x,y∈[a, b]使得

$             |f(y)-f(x)|≤M|y-x|^{1/2}$

法1:令\(M=(∫^b_a|f‘(t)|^2dt)^{1/2}\)

   $          |f(y)-f(x)|=|∫^y_xf‘(t)dt|≤∫^y_x|f‘(t)|dt$

由Chauchy-Schwarz不等式

$∫^y_x|f‘(t)|dt≤(∫^y_x|f‘(t)|^2dt|y-x|])^{1/2}≤M|y-x|^{1/2},得证$

法2;由f ′ ∈ R([a, b]),得存在M‘,使得对于任意t∈[a, b],|f‘(t)≤M‘, |f(y)-f(x)|≤M‘|y-x|

        当b-a≤1时,|y-x|≤1,则令M=M‘,\( |f(y)-f(x)|≤M‘|y-x|=M|y-x|≤M|y-x|^{1/2}\)

        当b-a>1时,令M=M‘(b-a),\(|f(y)-f(x)|≤M‘|y-x|=\frac{M|y-x|}{b-a}≤M|y-x|^{1/2},得证\)

 

有关Chauchy-Schwarz不等式的例题

原文:https://www.cnblogs.com/valar-morghulis/p/14888452.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!