首页 > 其他 > 详细

ALINK(三十三):特征工程(十二)特征组合与交叉(四)特征哈希 (FeatureHasherBatchOp)

时间:2021-06-19 09:30:16      阅读:11      评论:0      收藏:0      [点我收藏+]

Java 类名:com.alibaba.alink.operator.batch.feature.FeatureHasherBatchOp

Python 类名:FeatureHasherBatchOp

功能介绍

将多个特征组合成一个特征向量。

参数说明

名称

中文名称

描述

类型

是否必须?

默认值

outputCol

输出结果列列名

输出结果列列名,必选

String

?

 

selectedCols

选择的列名

计算列对应的列名列表

String[]

?

 

categoricalCols

离散特征列名

离散特征列名

String[]

   

numFeatures

向量维度

生成向量长度

Integer

 

262144

reservedCols

算法保留列名

算法保留列

String[]

 

null

numThreads

组件多线程线程个数

组件多线程线程个数

Integer

 

1

代码示例

Python 代码

from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
    [1.1, True, "2", "A"],
    [1.1, False, "2", "B"],
    [1.1, True, "1", "B"],
    [2.2, True, "1", "A"]
])
inOp1 = BatchOperator.fromDataframe(df, schemaStr=double double, bool boolean, number int, str string)
inOp2 = StreamOperator.fromDataframe(df, schemaStr=double double, bool boolean, number int, str string)
hasher = FeatureHasherBatchOp().setSelectedCols(["double", "bool", "number", "str"]).setOutputCol("output").setNumFeatures(200)
hasher.linkFrom(inOp1).print()
hasher = FeatureHasherStreamOp().setSelectedCols(["double", "bool", "number", "str"]).setOutputCol("output").setNumFeatures(200)
hasher.linkFrom(inOp2).print()
StreamOperator.execute()

Java 代码

import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.feature.FeatureHasherBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.stream.StreamOperator;
import com.alibaba.alink.operator.stream.feature.FeatureHasherStreamOp;
import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class FeatureHasherBatchOpTest {
  @Test
  public void testFeatureHasherBatchOp() throws Exception {
    List <Row> df = Arrays.asList(
      Row.of(1.1, true, 2, "A"),
      Row.of(1.1, false, 2, "B"),
      Row.of(1.1, true, 1, "B"),
      Row.of(2.2, true, 1, "A")
    );
    BatchOperator <?> inOp1 = new MemSourceBatchOp(df, "double double, bool boolean, number int, str string");
    StreamOperator <?> inOp2 = new MemSourceStreamOp(df, "double double, bool boolean, number int, str string");
    BatchOperator <?> hasher = new FeatureHasherBatchOp().setSelectedCols("double", "bool", "number", "str")
      .setOutputCol("output").setNumFeatures(200);
    hasher.linkFrom(inOp1).print();
    StreamOperator <?> hasher2 = new FeatureHasherStreamOp().setSelectedCols("double", "bool", "number", "str")
      .setOutputCol("output").setNumFeatures(200);
    hasher2.linkFrom(inOp2).print();
    StreamOperator.execute();
  }
}

运行结果

输出数据

double

bool

number

str

output

1.1000

true

2

A

$200$13:2.0 38:1.1 45:1.0 195:1.0

1.1000

false

2

B

$200$13:2.0 30:1.0 38:1.1 76:1.0

1.1000

true

1

B

$200$13:1.0 38:1.1 76:1.0 195:1.0

2.2000

true

1

A

$200$13:1.0 38:2.2 45:1.0 195:1.0

 

 

 

ALINK(三十三):特征工程(十二)特征组合与交叉(四)特征哈希 (FeatureHasherBatchOp)

原文:https://www.cnblogs.com/qiu-hua/p/14901612.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!