首页 > 其他 > 详细

tensorflow board

时间:2021-06-19 12:31:20      阅读:21      评论:0      收藏:0      [点我收藏+]

使用手写体数据集

导入库

import numpy as np
from tensorflow import keras
from keras.layers import Input, Dense, Dropout, Activation,Conv2D,MaxPool2D,Flatten
from keras.datasets import mnist
from keras.models import Model
from tensorflow.python.keras.utils.np_utils import to_categorical
from keras.callbacks import TensorBoard

建立模型

(x_train,y_train),(x_test,y_test) = mnist.load_data()

x_train=np.expand_dims(x_train,axis=-1)
x_test=np.expand_dims(x_test,axis=-1)
y_train=to_categorical(y_train,num_classes=10)
y_test=to_categorical(y_test,num_classes=10)
batch_size=128
epochs=1

inputs = Input([28,28,1])
x = Conv2D(32, (5,5), activation=‘relu‘)(inputs)
x = Conv2D(64, (5,5), activation=‘relu‘)(x)   
x = MaxPool2D(pool_size=(2,2))(x)
x = Flatten()(x)    
x = Dense(128, activation=‘relu‘)(x)
x = Dropout(0.5)(x)
x = Dense(10, activation=‘softmax‘)(x)

model = Model(inputs,x)

定义优化参数

model.compile(loss=‘categorical_crossentropy‘, optimizer="adam",metrics=[‘acc‘])

导入tensorboard

from tensorflow.keras.callbacks import TensorBoard

定义tensorflow 参数

tbCallBack = TensorBoard(log_dir=‘./log‘, histogram_freq=1,
                         write_graph=True,
                         write_grads=True,
                         batch_size=batch_size,
                         write_images=True)

模型训练,并将评价参数传回callback

bistory=model.fit(x_train, y_train,
          batch_size=batch_size,
          epochs=1,
          verbose=1,
          validation_data=(x_test, y_test),
          callbacks=[tbCallBack])
WARNING:tensorflow:`write_grads` will be ignored in TensorFlow 2.0 for the `TensorBoard` Callback.
WARNING:tensorflow:`batch_size` is no longer needed in the `TensorBoard` Callback and will be ignored in TensorFlow 2.0.
469/469 [==============================] - 217s 460ms/step - loss: 2.5759 - acc: 0.8084 - val_loss: 0.0620 - val_acc: 0.9825
%load_ext tensorboard  
#使用tensorboard 扩展
%tensorboard --logdir logs 
#定位tensorboard读取的文件目录
# logs是存放tensorboard文件的目录
The tensorboard extension is already loaded. To reload it, use:
  %reload_ext tensorboard



Reusing TensorBoard on port 6006 (pid 103), started 0:58:49 ago. (Use ‘!kill 103‘ to kill it.)



<IPython.core.display.Javascript object>

技术分享图片


## https://zhuanlan.zhihu.com/p/109638819
# https://blog.csdn.net/weixin_44791964/article/details/105002793

tensorflow board

原文:https://www.cnblogs.com/hufeng2021/p/14902174.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!