安全算法是算法的分支之一,还的依靠大量的数学基础进行计算,本文参照兜哥的AI安全样本对抗,做一个简单的算法安全概括,从零学习。
最新的安全算法对于我们常规的攻击样本检测,效果是不理想的,为了探究其原因,决定学习ai安全,神经网络。
常见的对抗样本的方法分为白盒,黑盒,以及真实世界物理攻击,难度依次递增。一下就照着书抄,一下几种方法的检测以及加固。
白盒攻击算法列举:
ILCM(最相似迭代算法)
FGSM(快速梯度算法)
BIM(基础迭代算法)
JSMA(显著图攻击算法)
DeepFool(DeepFool算法) C/W(C/W算法)
常见的黑盒攻击方法列举:
Single Pixel Attack(单像素攻击)
Local Search Attack(本地搜索攻击)
安全算法加固:
Feature squeezing(特征凝结)
Spatial smoothing(空间平滑)
Label smoothing(标签平滑)
Adversarial training(对抗训练)
Virtual adversarial training (虚拟对抗训练)
Gaussian data augmentation (高斯数据增强)
所谓的深度学习,AI算法,也是基于机器不断的学习打造成的模型,这是我基于安全算法模型的理解。对抗模拟样本采用的攻击是百度的AdvBox。
原文:https://www.cnblogs.com/xinxin999/p/14930293.html