首页 > 编程语言 > 详细

安全算法基础(一)

时间:2021-06-25 17:15:08      阅读:14      评论:0      收藏:0      [点我收藏+]

安全算法是算法的分支之一,还的依靠大量的数学基础进行计算,本文参照兜哥的AI安全样本对抗,做一个简单的算法安全概括,从零学习。

最新的安全算法对于我们常规的攻击样本检测,效果是不理想的,为了探究其原因,决定学习ai安全,神经网络。

常见的对抗样本的方法分为白盒,黑盒,以及真实世界物理攻击,难度依次递增。一下就照着书抄,一下几种方法的检测以及加固。

白盒攻击算法列举:

ILCM(最相似迭代算法)

FGSM(快速梯度算法)

BIM(基础迭代算法)

JSMA(显著图攻击算法)

DeepFool(DeepFool算法) C/W(C/W算法)

常见的黑盒攻击方法列举:

Single Pixel Attack(单像素攻击)

Local Search Attack(本地搜索攻击)

安全算法加固:

Feature squeezing(特征凝结)

Spatial smoothing(空间平滑)

Label smoothing(标签平滑)

Adversarial training(对抗训练)

Virtual adversarial training (虚拟对抗训练)

Gaussian data augmentation (高斯数据增强)

所谓的深度学习,AI算法,也是基于机器不断的学习打造成的模型,这是我基于安全算法模型的理解。对抗模拟样本采用的攻击是百度的AdvBox。

安全算法基础(一)

原文:https://www.cnblogs.com/xinxin999/p/14930293.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!