pass是空语句,是为了保持程序结构的完整性。pass 不做任何事情,一般用做占位语句
# a == str3 True == ---> 只需要内容相等 # a is str3 False is ---> 只需要内存地址相等
浅拷贝只是增加了一个指针指向一个存在的地址,
而深拷贝是增加一个指针并且开辟了新的内存,这个增加的指针指向这个新的内存,
采用浅拷贝的情况,释放内存,会释放同一内存,深拷贝就不会出现释放同一内存的错误
可变数据类型:列表、字典、可变集合
不可变数据类型:数字、字符串、元组、不可变集合
返回数字的绝对值
根据函数对指定序列做映射
map()函数接收两个参数,一个是函数,一个是可迭代对象,map将传入的函数依次作用到序列的每个元素,并把结果作为新的list返回。
返回值:
Python2 返回列表
Python3 返回迭代器
例子1: def mul(x): return x*x n=[1,2,3,4,5] res=list(map(mul,n)) print(res) #[1, 4, 9, 16, 25]
例子2:abs() 返回数字的绝对值
ret = map(abs,[-1,-5,6,-7])
print(list(ret))
# [1, 5, 6, 7]
filter()函数接收一个函数 f(函数)和一个list(可迭代对象),这个函数 f的作用是对每个元素进行判断,返回 True或 False, filter()根据判断结果自动过滤掉不符合条件的元素,返回由符合条件元素组成的新list。 def is_odd(x): return x % 2 == 1 v=list(filter(is_odd, [1, 4, 6, 7, 9, 12, 17])) print(v) #[1, 7, 9, 17]
# filter 与 map 总结 # 参数: 都是一个函数名 + 可迭代对象 # 返回值: 都是返回可迭代对象 # 区别: # filter 是做筛选的,结果还是原来就在可迭代对象中的项 # map 是对可迭代对象中每一项做操作的,结果不一定是原来就在可迭代对象中的项
isinstance() 函数来判断一个对象是否是一个已知的类型,类似 type()。 isinstance() 与 type() 区别: type() 不会认为子类是一种父类类型,不考虑继承关系。 isinstance() 会认为子类是一种父类类型,考虑继承关系。 如果要判断两个类型是否相同推荐使用 isinstance()。 # 例一
a = 2
print(isinstance(a,int)) # True
print(isinstance(a,str)) # False # type() 与 isinstance() 区别 class A: pass class B(A): pass print("isinstance",isinstance(A(),A)) # isinstance True print("type",type(A()) == A) # type True print(‘isinstance‘,isinstance(B(),A) ) # isinstance True print(‘type‘,type(B()) == A) # type False
# zip 拉链函数, # 将对象中对应的元素打包成一个个元组, # 然后返回由这些元组组成的列表迭代器。 # 如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同。 print(list(zip([0,1,3],[5,6,7],[‘a‘,‘b‘]))) # [(0, 5, ‘a‘), (1, 6, ‘b‘)]
zip() 函数用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。 >>>a = [1,2,3] >>> b = [4,5,6] >>> c = [4,5,6,7,8] >>> zipped = zip(a,b) # 打包为元组的列表 [(1, 4), (2, 5), (3, 6)] >>> zip(a,c) # 元素个数与最短的列表一致 [(1, 4), (2, 5), (3, 6)] >>> zip(*zipped) # 与 zip 相反,可理解为解压,返回二维矩阵式 [(1, 2, 3), (4, 5, 6)]
reduce
‘‘‘ reduce() 函数 reduce() 函数会对参数序列中元素进行累积 函数将一个数据集合(链表、元组等)中的所有数据进行下列操作 ‘‘‘ 注意: Python3已经将reduce() 函数从全局名字空间里移除了,它现在被放置在 fucntools 模块里,如果想要使用它,则需要通过引入 functools 模块来调用 reduce() 函数: from functools import reduce def add(x,y): return x + y print(reduce(add,[1,2,3,4,5])) # 15 print(reduce(lambda x, y: x+y, [1,2,3,4,5])) # 15 print(reduce(add,range(1,101))) # 5050
map:根据函数对指定序列做映射
map 参数 接收两个参数:一个是函数,一个是序列(可迭代对象) 返回值 Python2 返回列表 Python3 返回迭代器 # 例子: # abs() 函数返回数字的绝对值 # 新的内容的个数等于原内容的个数 # ret = map(abs,[-1,-5,6,-7]) # print(list(ret)) # [1, 5, 6, 7]
filter:过滤函数 新的内容少于等于原内容的时候。才能使用filter
filter() 函数用于过滤序列,过滤不符合条件的元素,返回由符合条件元素组成的心列表 参数: function 函数 iterable 可迭代对象 返回值: 返回列表 # 筛选大于10的数 def is_odd(x): if x>10: return True ret = filter(is_odd,[1,4,5,7,8,9,76]) # 为迭代器 print(list(ret)) # [76]
reduce:对于序列内所有元素进行累计操作
‘‘‘ reduce() 函数 reduce() 函数会对参数序列中元素进行累积 函数将一个数据集合(链表、元组等)中的所有数据进行下列操作 ‘‘‘ from functools import reduce def add(x,y): return x + y print(reduce(add,[1,2,3,4,5])) # 15 print(reduce(lambda x, y: x+y, [1,2,3,4,5])) # 15 print(reduce(add,range(1,101))) # 5050
re.match 尝试从字符串的起始位置匹配一个模式,如果不是起始位置匹配成功的话,match()就返回none。
re.search 扫描整个字符串并返回第一个成功的匹配。
匹配一个字符串没有节制,能匹配多少就去匹配多少,知道没有匹配的为止
# <generator object <genexpr> at 0x00000000020CEEB8> 生成器 # 在Python中,有一种自定义迭代器的方式,称为生成器(Generator)。 # 定义生成器的两种方式: # 1.创建一个generator,只要把一个列表生成式的[]改成(),就创建了一个generator: # generator保存的是算法,每次调用next(),就计算出下一个元素的值,直到计算到最后一个元素,
没有更多的元素时,抛出StopIteration的错误。 # 2.定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,
而是一个generator
list("1,2,3".split(‘,‘))
[int(x) for x in [‘1‘,‘2‘,‘3‘]] python 里如何把[‘1‘,‘2‘,‘3‘] 变成[1,2,3] a = [‘1‘,‘2‘,‘3‘] b = [int(i) for i in a] print(b) # [1, 2, 3]
list(set([1, 2, 3, 4, 45, 1, 2, 343, 2, 2]))
1.占位符%
%d 表示那个位置是整数;%f 表示浮点数;%s 表示字符串。
print(‘Hello,%s‘ % ‘Python‘) print(‘Hello,%d%s%.2f‘ % (666, ‘Python‘, 9.99)) # 打印:Hello,666Python10.00
2.format
print(‘{k} is {v}‘.format(k=‘python‘, v=‘easy‘)) # 通过关键字 print(‘{0} is {1}‘.format(‘python‘, ‘easy‘)) # 通过关键字
原文:https://www.cnblogs.com/lutong1989/p/14946361.html