首页 > 其他 > 详细

[状态转移]人、狼、羊、菜过河问题

时间:2021-07-04 12:06:26      阅读:37      评论:0      收藏:0      [点我收藏+]
  • 定义状态:人、狼、羊、菜表示为四维向量 \([i,j,k,w]\)\(0\) 表示在左岸,\(1\) 表示在右岸。最终需要从 \([0,0,0,0]\) 转移到 \([1,1,1,1]\)

  • 不合法状态:由于人不在时,狼会吃羊,羊会吃菜,故这些状态不合法:

    i != j and j == k # 狼吃羊
    i != k and k == w # 羊吃菜
    

    获取全部合法状态的函数:

    def get_state():
        cnt = 0
        state = {}
        for i in range(2):
            for j in range(2):
                for k in range(2):
                    for w in range(2):
                        if (i != j and j == k) or (i != k and k == w):
                            continue
                        else:
                            state[cnt] = [i,j,k,w]
                            cnt += 1
        return cnt, state
    
  • 状态转移:

    船每一次需从左岸到右岸,或从右岸到左岸,运送至多两样,且人必须在船上。故对于某一个状态转移\([I_1, J_1, K_1, W_1]\to [I_2, J_2, K_2, W_2]\) 需要满足下列条件:

    • \(I_1 \neq I2\)。即人必须在船上,即转移前后人处于岸的不同侧
    • 一次之多运送两样
    • 运送的物品都是从\(A\)侧到\(B\)侧,不能是一个从\(A\)\(B\),一个从\(B\)到A

    获取全部合法状态转移的函数:

    def get_trans(cnt, state):
        trans = []
        for i in range(cnt):
            for j in range(i+1, cnt):
                m = state[i]
                n = state[j]
                # count diff
                diff = sum([m[x]^n[x] for x in range(4)])
                sub = sum([m[x]-n[x] for x in range(4)])
                if diff > 2 or m[0] == n[0] or sub == 0:
                    continue
                else:
                    # print(str(m) + " => " + str(n))
                    trans.append((i,j))
        return trans
    
  • 转化问无向图最短路问题,求解\([0,0,0,0] \to [1,1,1,1]\) 的最短路

    import networkx as nx
    import numpy as np
    
    # [ human, wolf, sheep, veg]
    
    def get_state():
        cnt = 0
        state = {}
        for i in range(2):
            for j in range(2):
                for k in range(2):
                    for w in range(2):
                        if (i != j and j == k) or (i != k and k == w):
                            continue
                        else:
                            state[cnt] = [i,j,k,w]
                            cnt += 1
        return cnt, state
    
    
    def get_trans(cnt, state):
        trans = []
        for i in range(cnt):
            for j in range(i+1, cnt):
                m = state[i]
                n = state[j]
                # count diff
                diff = sum([m[x]^n[x] for x in range(4)])
                sub = sum([m[x]-n[x] for x in range(4)])
                if diff > 2 or m[0] == n[0] or sub == 0:
                    continue
                else:
                    # print(str(m) + " => " + str(n))
                    trans.append((i,j))
        return trans
    
    
    if __name__ == ‘__main__‘:
        num_node, tot_state = get_state()
        tot_trans = get_trans(num_node, tot_state)
        G = nx.Graph()
        for node in range(num_node):
            G.add_node(node)
        for edge in tot_trans:
            G.add_edge(edge[0], edge[1])
    
        tot_shortest_path = nx.all_shortest_paths(G=G, source=0, target=num_node-1)
    
        dic = {0:"人", 1:"狼", 2:"羊", 3:"菜"}
    
        cnt = 0
        for shortest_path in tot_shortest_path:
            for i in range(len(shortest_path)):
                cur = tot_state[shortest_path[i]]
                print(‘[‘ + str(i+1) + ‘] ‘, end=‘‘)
                print("左岸: ", end=‘‘)
                for j in range(4):
                    if cur[j] == 0:
                        print(dic[j], end=‘‘)
                print(" | ",end=‘‘)
                print("右岸: ", end=‘‘)
                for j in range(4):
                    if cur[j] == 1:
                        print(dic[j], end=‘‘)
                print(‘\n‘)
            print(‘------------------------‘)
            cnt += 1
    
        print(‘总方案数‘ + str(cnt))
    
  • 结果

    [1] 左岸: 人狼羊菜 | 右岸: 
    
    [2] 左岸: 狼菜 | 右岸: 人羊
    
    [3] 左岸: 人狼菜 | 右岸: 羊
    
    [4] 左岸: 狼 | 右岸: 人羊菜
    
    [5] 左岸: 人狼羊 | 右岸: 菜
    
    [6] 左岸: 羊 | 右岸: 人狼菜
    
    [7] 左岸: 人羊 | 右岸: 狼菜
    
    [8] 左岸:  | 右岸: 人狼羊菜
    
    ------------------------
    [1] 左岸: 人狼羊菜 | 右岸: 
    
    [2] 左岸: 狼菜 | 右岸: 人羊
    
    [3] 左岸: 人狼菜 | 右岸: 羊
    
    [4] 左岸: 菜 | 右岸: 人狼羊
    
    [5] 左岸: 人羊菜 | 右岸: 狼
    
    [6] 左岸: 羊 | 右岸: 人狼菜
    
    [7] 左岸: 人羊 | 右岸: 狼菜
    
    [8] 左岸:  | 右岸: 人狼羊菜
    
    ------------------------
    总方案数2
    

[状态转移]人、狼、羊、菜过河问题

原文:https://www.cnblogs.com/popodynasty/p/14968497.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!