首页 > 移动平台 > 详细

深入理解 Android ANR 触发原理以及信息收集过程

时间:2021-07-05 10:37:58      阅读:34      评论:0      收藏:0      [点我收藏+]

一、概述

作为 Android 开发者,相信大家都遇到过 ANR。那么为什么会出现 ANR 呢,ANR 之后系统都做了啥。文章将对这个问题详细解说。

ANR(Application Not responding),是指应用程序未响应,Android系统对于一些事件需要在一定的时间范围内完成,如果超过预定时间能未能得到有效响应或者响应时间过长,都会造成ANR。一般地,这时往往会弹出一个提示框,告知用户当前xxx未响应,用户可选择继续等待或者Force Close。

那么哪些场景会造成ANR呢?

  • Service Timeout:比如前台服务在20s内未执行完成;

  • BroadcastQueue Timeout:比如前台广播在10s内未执行完成

  • ContentProvider Timeout:内容提供者,在publish过超时10s;

  • InputDispatching Timeout: 输入事件分发超时5s,包括按键和触摸事件。

触发ANR的过程可分为三个步骤: 埋炸弹, 拆炸弹, 引爆炸弹。

埋炸弹可以理解为发送了一个延迟触发的消息(炸弹);

拆炸弹可以理解为将这个延迟消息(炸弹)取消了,也就不会触发了;

引爆炸弹可以理解为延迟时间已达,开始处理延迟消息(炸弹引爆了)。

二、Service

先附上一张 service 启动流程图:

技术分享图片 

Service Timeout是位于”ActivityManager”线程中的AMS.MainHandler收到SERVICE_TIMEOUT_MSG消息时触发。

对于Service有两类:

  • 对于前台服务,则超时为SERVICE_TIMEOUT = 20s;
  • 对于后台服务,则超时为SERVICE_BACKGROUND_TIMEOUT = 200s

由变量ProcessRecord.execServicesFg来决定是否前台启动。

2.1 埋炸弹

其中在Service进程attach到system_server进程的过程中会调用realStartServiceLocked()方法来埋下炸弹.

首先咱们先看 service 的启动中一个方法 realStartServiceLocked:

// ActiveServices.java
private final void realStartServiceLocked(ServiceRecord r, ProcessRecord app, boolean execInFg) throws RemoteException {
    ...
    //发送delay消息(SERVICE_TIMEOUT_MSG)
    bumpServiceExecutingLocked(r, execInFg, "create");
    try {
        ...
        //最终执行服务的onCreate()方法
        app.thread.scheduleCreateService(r, r.serviceInfo,
                mAm.compatibilityInfoForPackageLocked(r.serviceInfo.applicationInfo),
                app.repProcState);
    } catch (DeadObjectException e) {
        mAm.appDiedLocked(app);
        throw e;
    } finally {
        ...
    }
}

private final void bumpServiceExecutingLocked(ServiceRecord r, boolean fg, String why) {
    ... 
    scheduleServiceTimeoutLocked(r.app);
}

void scheduleServiceTimeoutLocked(ProcessRecord proc) {
    if (proc.executingServices.size() == 0 || proc.thread == null) {
        return;
    }
    long now = SystemClock.uptimeMillis();
    Message msg = mAm.mHandler.obtainMessage(
            ActivityManagerService.SERVICE_TIMEOUT_MSG);
    msg.obj = proc;
    
    //当超时后仍没有remove该SERVICE_TIMEOUT_MSG消息,则执行service Timeout流程
    mAm.mHandler.sendMessageAtTime(msg,
        proc.execServicesFg ? (now+SERVICE_TIMEOUT) : (now+ SERVICE_BACKGROUND_TIMEOUT));
} 

在 AS.realStartServiceLocked 启动 service 方法中,发送了了一个延时的关于超时的消息,这里又对 service 进行了前后台的区分:

    // How long we wait for a service to finish executing. 20s
    static final int SERVICE_TIMEOUT = 20*1000;

    // How long we wait for a service to finish executing. 200s
    static final int SERVICE_BACKGROUND_TIMEOUT = SERVICE_TIMEOUT * 10;

2.2 拆炸弹

AS.realStartServiceLocked() 调用的过程会埋下一颗炸弹, 超时没有启动完成则会爆炸. 那么什么时候会拆除这颗炸弹的引线呢? 经过Binder等层层调用进入目标进程的主线程handleCreateService()的过程.

// ActivityThread,这里多说一句, ApplicationThread 是其内部类
private void handleCreateService(CreateServiceData data) {
        ...
        java.lang.ClassLoader cl = packageInfo.getClassLoader();
        Service service = (Service) cl.loadClass(data.info.name).newInstance();
        ...

        try {
            //创建ContextImpl对象
            ContextImpl context = ContextImpl.createAppContext(this, packageInfo);
            context.setOuterContext(service);
            //创建Application对象
            Application app = packageInfo.makeApplication(false, mInstrumentation);
            service.attach(context, this, data.info.name, data.token, app,
                    ActivityManagerNative.getDefault());
            //调用服务onCreate()方法 
            service.onCreate();
            
            // 
            ActivityManagerNative.getDefault().serviceDoneExecuting(
                    data.token, SERVICE_DONE_EXECUTING_ANON, 0, 0);
        } catch (Exception e) {
            ...
        }
    }

 在这个过程会创建目标服务对象,以及回调 onCreate() 方法, 紧接再次经过多次调用回到 system_server 来执行 serviceDoneExecuting 。

// ActiveServices
private void serviceDoneExecutingLocked(ServiceRecord r, boolean inDestroying, boolean finishing) {
    ...
    if (r.executeNesting <= 0) {
        if (r.app != null) {
            r.app.execServicesFg = false;
            r.app.executingServices.remove(r);
            if (r.app.executingServices.size() == 0) {
                //当前服务所在进程中没有正在执行的service
                mAm.mHandler.removeMessages(ActivityManagerService.SERVICE_TIMEOUT_MSG, r.app);
        ...
    }
    ...
}
// How long we wait for a service to finish executing.
static final int SERVICE_TIMEOUT = 20*1000;

该方法会在 service 启动完成后移除服务超时消息 SERVICE_TIMEOUT_MSG,时间是 20s。

2.3 引爆炸弹

前面介绍了埋炸弹和拆炸弹的过程, 如果在炸弹倒计时结束之前成功拆卸炸弹,那么就没有爆炸的机会, 但是世事难料. 总有些极端情况下无法即时拆除炸弹,导致炸弹爆炸, 其结果就是 App 发生 ANR. 接下来,带大家来看看炸弹爆炸的现场:

在 system_server 进程中有一个Handler线程,当倒计时结束便会向该 Handler 线程发送一条信息SERVICE_TIMEOUT_MSG,

  // ActivityManagerService.java ::MainHandler
 final class MainHandler extends Handler {
        public MainHandler(Looper looper) {
            super(looper, null, true);
        }

        @Override
        public void handleMessage(Message msg) {
            switch (msg.what) {
        ......case SERVICE_TIMEOUT_MSG: {
                mServices.serviceTimeout((ProcessRecord)msg.obj);
            } break;
     }
}    

 当延时时间到了之后,就会对消息进行处理,下面看下具体处理逻辑:

oid serviceTimeout(ProcessRecord proc) {
    String anrMessage = null;

    synchronized(mAm) {
        if (proc.executingServices.size() == 0 || proc.thread == null) {
            return;
        }
        final long now = SystemClock.uptimeMillis();
        final long maxTime =  now -
                (proc.execServicesFg ? SERVICE_TIMEOUT : SERVICE_BACKGROUND_TIMEOUT);
        ServiceRecord timeout = null;
        long nextTime = 0;
        for (int i=proc.executingServices.size()-1; i>=0; i--) {
       // 从进程里面获取正在运行的 service ServiceRecord sr
= proc.executingServices.valueAt(i); if (sr.executingStart < maxTime) { timeout = sr; break; } if (sr.executingStart > nextTime) { nextTime = sr.executingStart; } } if (timeout != null && mAm.mLruProcesses.contains(proc)) { Slog.w(TAG, "Timeout executing service: " + timeout); StringWriter sw = new StringWriter(); PrintWriter pw = new FastPrintWriter(sw, false, 1024); pw.println(timeout); timeout.dump(pw, " "); pw.close(); mLastAnrDump = sw.toString(); mAm.mHandler.removeCallbacks(mLastAnrDumpClearer); mAm.mHandler.postDelayed(mLastAnrDumpClearer, LAST_ANR_LIFETIME_DURATION_MSECS); anrMessage = "executing service " + timeout.shortName; } } if (anrMessage != null) { //当存在timeout的service,则执行appNotResponding mAm.appNotResponding(proc, null, null, false, anrMessage); } }

其中anrMessage的内容为”executing service [发送超时serviceRecord信息]”;

2.4 前台与后台服务的区别

系统对前台服务启动的超时为20s,而后台服务超时为200s,那么系统是如何区别前台还是后台服务呢?来看看ActiveServices的核心逻辑:

ComponentName startServiceLocked(...) {
    final boolean callerFg;
    if (caller != null) {
        final ProcessRecord callerApp = mAm.getRecordForAppLocked(caller);
        callerFg = callerApp.setSchedGroup != ProcessList.SCHED_GROUP_BACKGROUND;
    } else {
        callerFg = true;
    }
    ...
    ComponentName cmp = startServiceInnerLocked(smap, service, r, callerFg, addToStarting);
    return cmp;
} 

在startService过程根据发起方进程 callerApp 所属的进程调度组来决定被启动的服务是属于前台还是后台。当发起方进程不等于ProcessList.SCHED_GROUP_BACKGROUND (后台进程组) 则认为是前台服务,否则为后台服务,并标记在ServiceRecord的成员变量createdFromFg。

什么进程属于SCHED_GROUP_BACKGROUND调度组呢?进程调度组大体可分为TOP、前台、后台,进程优先级(Adj)和进程调度组(SCHED_GROUP)算法较为复杂,其对应关系可粗略理解为Adj等于0的进程属于Top进程组,Adj等于100或者200的进程属于前台进程组,Adj大于200的进程属于后台进程组。关于Adj的含义见下表,简单来说就是Adj>200的进程对用户来说基本是无感知,主要是做一些后台工作,故后台服务拥有更长的超时阈值,同时后台服务属于后台进程调度组,相比前台服务属于前台进程调度组,分配更少的CPU时间片。

技术分享图片

前台服务准确来说,是指由处于前台进程调度组的进程发起的服务。这跟常说的fg-service服务有所不同,fg-service是指挂有前台通知的服务。

需要注意的问题,如果日志中出现 Reason: executing service com.example.baidu/.AnrService 也不一定是因为服务本身耗时导致,比如启动服务后,执行了耗时的操作,启动服务时onCreate函数或者 onStartCommand函数不能执行,超时后,仍然会造成anr

三、BroadcastReceiver

BroadcastReceiver Timeout 是位于”ActivityManager”线程中的BroadcastQueue.BroadcastHandler收到BROADCAST_TIMEOUT_MSG消息时触发。

对于广播队列有两个: foreground 队列和 background 队列:

  • 对于前台广播,则超时为 BROADCAST_FG_TIMEOUT = 10s;
  • 对于后台广播,则超时为 BROADCAST_BG_TIMEOUT = 60s

3.1 埋炸弹

先看发送广播的逻辑:

// ActivityManagerService.java]
public final int broadcastIntent(IApplicationThread caller,
            Intent intent, String resolvedType, IIntentReceiver resultTo,
            int resultCode, String resultData, Bundle resultExtras,
            String[] requiredPermissions, int appOp, Bundle bOptions,
            boolean serialized, boolean sticky, int userId) {
        enforceNotIsolatedCaller("broadcastIntent");
        synchronized(this) {
       // 验证广播的有效性 intent
= verifyBroadcastLocked(intent);        // 获取发送广播的进程信息 final ProcessRecord callerApp = getRecordForAppLocked(caller); final int callingPid = Binder.getCallingPid(); final int callingUid = Binder.getCallingUid(); final long origId = Binder.clearCallingIdentity(); try { return broadcastIntentLocked(callerApp, callerApp != null ? callerApp.info.packageName : null, intent, resolvedType, resultTo, resultCode, resultData, resultExtras, requiredPermissions, appOp, bOptions, serialized, sticky, callingPid, callingUid, callingUid, callingPid, userId); } finally { Binder.restoreCallingIdentity(origId); } } }

broadcastIntent()方法有两个布尔参数 serialized 和 sticky 来共同决定是普通广播,有序广播,还是 Sticky 广播,参数如下:

类型serializedsticky
sendBroadcast false false
sendOrderedBroadcast true false
sendStickyBroadcast false true

 

说完发送广播,接下去就要讲讲讲收广播的操作了。

首先广播发出去之后,肯定会存在一个队列里面来进行处理。

// ActivityManagerService
  public ActivityManagerService(Context systemContext, ActivityTaskManagerService atm) {
    // ...... 创建了三个队列来保存不同的广播类型
        mFgBroadcastQueue = new BroadcastQueue(this, mHandler,
                "foreground", foreConstants, false);
        mBgBroadcastQueue = new BroadcastQueue(this, mHandler,
                "background", backConstants, true);
        mOffloadBroadcastQueue = new BroadcastQueue(this, mHandler,
                "offload", offloadConstants, true);
        mBroadcastQueues[0] = mFgBroadcastQueue;
        mBroadcastQueues[1] = mBgBroadcastQueue;
        mBroadcastQueues[2] = mOffloadBroadcastQueue;
    
}

在 ams 的构造函数里面,可以发现这里对广播进行了分类,分别有前台广播,后台广播,Offload 广播,并用一个新的数组将这三个队列放在一起。这里的 handler 是 MainHandler,也就是主线程的。传入是为了获取其 looper 。

    BroadcastQueue(ActivityManagerService service, Handler handler,
            String name, BroadcastConstants constants, boolean allowDelayBehindServices) {
        mService = service;
     // 广播的 handler 主要是获取到 ams 中 handler looper 来创建的 mHandler
= new BroadcastHandler(handler.getLooper()); mQueueName = name; mDelayBehindServices = allowDelayBehindServices; mConstants = constants; mDispatcher = new BroadcastDispatcher(this, mConstants, mHandler, mService); }

下面就说下处理广播的逻辑:

    private final class BroadcastHandler extends Handler {
        public BroadcastHandler(Looper looper) {
            super(looper, null, true);
        }

        @Override
        public void handleMessage(Message msg) {
            switch (msg.what) {
                case BROADCAST_INTENT_MSG: {
                    if (DEBUG_BROADCAST) Slog.v(
                            TAG_BROADCAST, "Received BROADCAST_INTENT_MSG ["
                            + mQueueName + "]");
            // 开始处理广播 processNextBroadcast(
true); } break; case BROADCAST_TIMEOUT_MSG: { synchronized (mService) { broadcastTimeoutLocked(true); } } break; } } }

可以发现这里调用的是  processNextBroadcast 方法来处理广播。

final void processNextBroadcast(boolean fromMsg) {
    synchronized(mService) {
        //part1: 处理并行广播
        while (mParallelBroadcasts.size() > 0) {
            r = mParallelBroadcasts.remove(0);
            r.dispatchTime = SystemClock.uptimeMillis();
            r.dispatchClockTime = System.currentTimeMillis();
            final int N = r.receivers.size();
            for (int i=0; i<N; i++) {
                Object target = r.receivers.get(i);
                //分发广播给已注册的receiver 
                deliverToRegisteredReceiverLocked(r, (BroadcastFilter)target, false);
            }
            addBroadcastToHistoryLocked(r);//将广播添加历史统计
        }

        //part2: 处理当前有序广播
        do {
            if (mOrderedBroadcasts.size() == 0) {
                mService.scheduleAppGcsLocked(); //没有更多的广播等待处理
                if (looped) {
                    mService.updateOomAdjLocked();
                }
                return;
            }
            r = mOrderedBroadcasts.get(0); //获取串行广播的第一个广播
            boolean forceReceive = false;
            int numReceivers = (r.receivers != null) ? r.receivers.size() : 0;
            if (mService.mProcessesReady && r.dispatchTime > 0) {
                long now = SystemClock.uptimeMillis();
                if ((numReceivers > 0) && (now > r.dispatchTime + (2*mTimeoutPeriod*numReceivers))) {
                    broadcastTimeoutLocked(false); //当广播处理时间超时,则强制结束这条广播
                }
            }
            ...
            if (r.receivers == null || r.nextReceiver >= numReceivers
                    || r.resultAbort || forceReceive) {
                if (r.resultTo != null) {
                    //处理广播消息消息,调用到onReceive()
                    performReceiveLocked(r.callerApp, r.resultTo,
                        new Intent(r.intent), r.resultCode,
                        r.resultData, r.resultExtras, false, false, r.userId);
                }

                cancelBroadcastTimeoutLocked(); //取消BROADCAST_TIMEOUT_MSG消息
                addBroadcastToHistoryLocked(r);
                mOrderedBroadcasts.remove(0);
                continue;
            }
        } while (r == null);

        //part3: 获取下一个receiver
        r.receiverTime = SystemClock.uptimeMillis();
        if (recIdx == 0) {
            r.dispatchTime = r.receiverTime;
            r.dispatchClockTime = System.currentTimeMillis();
        }
        if (!mPendingBroadcastTimeoutMessage) {
            long timeoutTime = r.receiverTime + mTimeoutPeriod;
            setBroadcastTimeoutLocked(timeoutTime); //设置广播超时延时消息
        }

        //part4: 处理下条有序广播
        ProcessRecord app = mService.getProcessRecordLocked(targetProcess,
                info.activityInfo.applicationInfo.uid, false);
        if (app != null && app.thread != null) {
            app.addPackage(info.activityInfo.packageName,
                    info.activityInfo.applicationInfo.versionCode, mService.mProcessStats);
            processCurBroadcastLocked(r, app); //[处理串行广播]
            return;
            ...
        }

        //该receiver所对应的进程尚未启动,则创建该进程
        if ((r.curApp=mService.startProcessLocked(targetProcess,
                info.activityInfo.applicationInfo, true,
                r.intent.getFlags() | Intent.FLAG_FROM_BACKGROUND,
                "broadcast", r.curComponent,
                (r.intent.getFlags()&Intent.FLAG_RECEIVER_BOOT_UPGRADE) != 0, false, false))
                        == null) {
            ...
            return;
        }
    }
}

对于广播超时处理时机:

  1. 首先在part3的过程中setBroadcastTimeoutLocked(timeoutTime) 设置超时广播消息;

  2. 然后在part2根据广播处理情况来处理:

    • 当广播接收者等待时间过长,则调用 broadcastTimeoutLocked(false);也就是引爆炸弹

    • 当执行完广播,则调用 cancelBroadcastTimeoutLocked; 也就是拆除炸弹

// BroadcastQueue
final void setBroadcastTimeoutLocked(long timeoutTime) {
    if (! mPendingBroadcastTimeoutMessage) {
        Message msg = mHandler.obtainMessage(BROADCAST_TIMEOUT_MSG, this);
        mHandler.sendMessageAtTime(msg, timeoutTime);
        mPendingBroadcastTimeoutMessage = true;
    }
}

设置定时广播 BROADCAST_TIMEOUT_MSG,即当前往后推 mTimeoutPeriod 时间广播还没处理完毕,则进入广播超时流程。

    // BroadcastConstants.java 
   private static final long DEFAULT_TIMEOUT = 10_000; // Timeout period for this broadcast queue public long TIMEOUT = DEFAULT_TIMEOUT; // Unspecified fields retain their current value rather than revert to default 超时时间还是可以设置的 TIMEOUT = mParser.getLong(KEY_TIMEOUT, TIMEOUT);

 

 来看下具体时间的设置,超时设置的是 10 s。 

3.2 拆炸弹

broadcast跟service超时机制大抵相同:

// 取消超时    
final void cancelBroadcastTimeoutLocked() {
        if (mPendingBroadcastTimeoutMessage) {
            // 移除消息
            mHandler.removeMessages(BROADCAST_TIMEOUT_MSG, this);
            mPendingBroadcastTimeoutMessage = false;
        }
    }

移除广播超时消息 BROADCAST_TIMEOUT_MSG,这样就把诈弹拆除了。

 3.3 引爆炸弹

下面看下引爆炸弹的逻辑,前面我们已经介绍了 BroadcastQueue 中的 handler 的实现了,下面直接看下超时的处理逻辑:

//fromMsg = true
final void broadcastTimeoutLocked(boolean fromMsg) {
    if (fromMsg) {
        mPendingBroadcastTimeoutMessage = false;
    }

    if (mOrderedBroadcasts.size() == 0) {
        return;
    }

    long now = SystemClock.uptimeMillis();
    BroadcastRecord r = mOrderedBroadcasts.get(0);
    if (fromMsg) {
        if (mService.mDidDexOpt) {
            mService.mDidDexOpt = false;
            long timeoutTime = SystemClock.uptimeMillis() + mTimeoutPeriod;
            setBroadcastTimeoutLocked(timeoutTime);
            return;
        }
        
        if (!mService.mProcessesReady) {
            return; //当系统还没有准备就绪时,广播处理流程中不存在广播超时
        }

        long timeoutTime = r.receiverTime + mTimeoutPeriod;
        if (timeoutTime > now) {
            //如果当前正在执行的receiver没有超时,则重新设置广播超时
            setBroadcastTimeoutLocked(timeoutTime);
            return;
        }
    }

    BroadcastRecord br = mOrderedBroadcasts.get(0);
    if (br.state == BroadcastRecord.WAITING_SERVICES) {
        //广播已经处理完成,但需要等待已启动service执行完成。当等待足够时间,则处理下一条广播。
        br.curComponent = null;
        br.state = BroadcastRecord.IDLE;
        processNextBroadcast(false);
        return;
    }

    r.receiverTime = now;
    //当前BroadcastRecord的anr次数执行加1操作
    r.anrCount++;

    if (r.nextReceiver <= 0) {
        return;
    }
    ...
    
    Object curReceiver = r.receivers.get(r.nextReceiver-1);
    //查询App进程
    if (curReceiver instanceof BroadcastFilter) {
        BroadcastFilter bf = (BroadcastFilter)curReceiver;
        if (bf.receiverList.pid != 0
                && bf.receiverList.pid != ActivityManagerService.MY_PID) {
            synchronized (mService.mPidsSelfLocked) {
                app = mService.mPidsSelfLocked.get(
                        bf.receiverList.pid);
            }
        }
    } else {
        app = r.curApp;
    }

    if (app != null) {
        anrMessage = "Broadcast of " + r.intent.toString();
    }

    if (mPendingBroadcast == r) {
        mPendingBroadcast = null;
    }

    //继续移动到下一个广播接收者
    finishReceiverLocked(r, r.resultCode, r.resultData,
            r.resultExtras, r.resultAbort, false);
    scheduleBroadcastsLocked();

    if (anrMessage != null) {
        // 发送 anr 消息,带上了 anr 进程信息和 anr 消息
        mHandler.post(new AppNotResponding(app, anrMessage));
    }
}
  1. mOrderedBroadcasts已处理完成,则不会anr;

  2. 正在执行dexopt,则不会anr;

  3. 系统还没有进入ready状态(mProcessesReady=false),则不会anr;

  4. 如果当前正在执行的receiver没有超时,则重新设置广播超时,不会anr;

来看下  AppNotResponding 实现:

    private final class AppNotResponding implements Runnable {
        private final ProcessRecord mApp;
        private final String mAnnotation;

        public AppNotResponding(ProcessRecord app, String annotation) {
            mApp = app;
            mAnnotation = annotation;
        }

        @Override
        public void run() {
            mApp.appNotResponding(null, null, null, null, false, mAnnotation);
        }
    }

最终会让 ProcessRecord 来处理 anr,并且其内部持有 ActivityManagerService 实例。

3.4 前台与后台广播超时

前台广播超时为10s,后台广播超时为60s,那么如何区分前台和后台广播呢?来看看AMS的核心逻辑:

BroadcastQueue broadcastQueueForIntent(Intent intent) {
    final boolean isFg = (intent.getFlags() & Intent.FLAG_RECEIVER_FOREGROUND) != 0;
    return (isFg) ? mFgBroadcastQueue : mBgBroadcastQueue;
}

mFgBroadcastQueue = new BroadcastQueue(this, mHandler,
        "foreground", BROADCAST_FG_TIMEOUT, false);
mBgBroadcastQueue = new BroadcastQueue(this, mHandler,
        "background", BROADCAST_BG_TIMEOUT, true);

根据发送广播sendBroadcast(Intent intent)中的intent的flags是否包含 FLAG_RECEIVER_FOREGROUND 来决定把该广播是放入前台广播队列或者后台广播队列,前台广播队列的超时为10s,后台广播队列的超时为60s,默认情况下广播是放入后台广播队列,除非指明加上 FLAG_RECEIVER_FOREGROUND 标识。

后台广播比前台广播拥有更长的超时阈值,同时在广播分发过程遇到后台service的启动(mDelayBehindServices)会延迟分发广播,等待service的完成,因为等待service而导致的广播ANR会被忽略掉;后台广播属于后台进程调度组,而前台广播属于前台进程调度组。简而言之,后台广播更不容易发生ANR,同时执行的速度也会更慢。

另外,只有串行处理的广播才有超时机制,因为接收者是串行处理的,前一个receiver处理慢,会影响后一个receiver;并行广播通过一个循环一次性向所有的receiver分发广播事件,所以不存在彼此影响的问题,则没有广播超时。

前台广播准确来说,是指位于前台广播队列的广播

四 ContentProvider

ContentProvider Timeout是位于”ActivityManager”线程中的AMS.MainHandler收到CONTENT_PROVIDER_PUBLISH_TIMEOUT_MSG消息时触发。

ContentProvider 超时为CONTENT_PROVIDER_PUBLISH_TIMEOUT = 10s. 这个跟前面的Service和BroadcastQueue完全不同, 由 Provider 进程启动过程相关.

4.1 埋炸弹

埋炸弹的过程其实是在进程创建的过程,进程创建后会调用attachApplicationLocked() 进入system_server进程。

// ActivityManagerService
private final boolean attachApplicationLocked(IApplicationThread thread, int pid) {
    ProcessRecord app;
    if (pid != MY_PID && pid >= 0) {
        synchronized (mPidsSelfLocked) {
            app = mPidsSelfLocked.get(pid); // 根据pid获取ProcessRecord
        }
    } 
    ...
    
    //系统处于ready状态或者该app为FLAG_PERSISTENT进程则为true
    boolean normalMode = mProcessesReady || isAllowedWhileBooting(app.info);
    List<ProviderInfo> providers = normalMode ? generateApplicationProvidersLocked(app) : null;

    //app进程存在正在启动中的provider,则超时10s后发送CONTENT_PROVIDER_PUBLISH_TIMEOUT_MSG消息
    if (providers != null && checkAppInLaunchingProvidersLocked(app)) {
        Message msg = mHandler.obtainMessage(CONTENT_PROVIDER_PUBLISH_TIMEOUT_MSG);
        msg.obj = app;
        mHandler.sendMessageDelayed(msg, CONTENT_PROVIDER_PUBLISH_TIMEOUT);
    }
    
    thread.bindApplication(...);
    ...
}
// 10s
static
final int CONTENT_PROVIDER_PUBLISH_TIMEOUT = 10*1000;

10s 之后引爆该炸弹.

4.2 拆炸弹

当 provider 成功 publish 之后,便会拆除该炸弹.

public final void publishContentProviders(IApplicationThread caller, List<ContentProviderHolder> providers) {
   ...
   
   synchronized (this) {
       final ProcessRecord r = getRecordForAppLocked(caller);
       
       final int N = providers.size();
       for (int i = 0; i < N; i++) {
           ContentProviderHolder src = providers.get(i);
           ...
           ContentProviderRecord dst = r.pubProviders.get(src.info.name);
           if (dst != null) {
               ComponentName comp = new ComponentName(dst.info.packageName, dst.info.name);
               
               mProviderMap.putProviderByClass(comp, dst); //将该provider添加到mProviderMap
               String names[] = dst.info.authority.split(";");
               for (int j = 0; j < names.length; j++) {
                   mProviderMap.putProviderByName(names[j], dst);
               }

               int launchingCount = mLaunchingProviders.size();
               int j;
               boolean wasInLaunchingProviders = false;
               for (j = 0; j < launchingCount; j++) {
                   if (mLaunchingProviders.get(j) == dst) {
                       //将该provider移除mLaunchingProviders队列
                       mLaunchingProviders.remove(j);
                       wasInLaunchingProviders = true;
                       j--;
                       launchingCount--;
                   }
               }
               //成功pubish则移除该消息
               if (wasInLaunchingProviders) {
                   mHandler.removeMessages(CONTENT_PROVIDER_PUBLISH_TIMEOUT_MSG, r);
               }
               synchronized (dst) {
                   dst.provider = src.provider;
                   dst.proc = r;
                   //唤醒客户端的wait等待方法
                   dst.notifyAll();
               }
               ...
           }
       }
   }    
}

4.3 引爆炸弹

在system_server进程中有一个Handler线程, 名叫”ActivityManager”.当倒计时结束便会向该Handler线程发送 一条信息CONTENT_PROVIDER_PUBLISH_TIMEOUT_MSG. MainHandler 是 AMS 的内部类。 

final class MainHandler extends Handler {
    public void handleMessage(Message msg) {
        switch (msg.what) {
            case CONTENT_PROVIDER_PUBLISH_TIMEOUT_MSG: {
                ...
                ProcessRecord app = (ProcessRecord)msg.obj;
                synchronized (ActivityManagerService.this) {
                    //【见小节4.3.2】
                    processContentProviderPublishTimedOutLocked(app);
                }
            } break;
            ...
        }
        ...
    }
}

private final void processContentProviderPublishTimedOutLocked(ProcessRecord app) {
    //[见4.3.3]
    cleanupAppInLaunchingProvidersLocked(app, true); 
    //[见小节4.3.4]
    removeProcessLocked(app, false, true, "timeout publishing content providers");
}


boolean cleanupAppInLaunchingProvidersLocked(ProcessRecord app, boolean alwaysBad) {
    boolean restart = false;
    for (int i = mLaunchingProviders.size() - 1; i >= 0; i--) {
        ContentProviderRecord cpr = mLaunchingProviders.get(i);
        if (cpr.launchingApp == app) {
            if (!alwaysBad && !app.bad && cpr.hasConnectionOrHandle()) {
                restart = true;
            } else {
                //移除死亡的provider
                removeDyingProviderLocked(app, cpr, true);
            }
        }
    }
    return restart;
}

removeDyingProviderLocked()的功能跟进程的存活息息相关:详见ContentProvider引用计数 []小节4.5]

  • 对于stable类型的provider(即conn.stableCount > 0),则会杀掉所有跟该provider建立stable连接的非persistent进程.

  • 对于unstable类的provider(即conn.unstableCount > 0),并不会导致client进程被级联所杀.

五、input超时机制

input的超时检测机制跟service、broadcast、provider截然不同,为了更好的理解input过程先来介绍两个重要线程的相关工作:

  • InputReader线程负责通过EventHub(监听目录/dev/input)读取输入事件,一旦监听到输入事件则放入到InputDispatcher的mInBoundQueue队列,并通知其处理该事件;

  • InputDispatcher线程负责将接收到的输入事件分发给目标应用窗口,分发过程使用到3个事件队列:

    • mInBoundQueue用于记录InputReader发送过来的输入事件;

    • outBoundQueue用于记录即将分发给目标应用窗口的输入事件;

    • waitQueue用于记录已分发给目标应用,且应用尚未处理完成的输入事件;

input的超时机制并非时间到了一定就会爆炸,而是处理后续上报事件的过程才会去检测是否该爆炸,所以更像是扫雷的过程,具体如下图所示。

技术分享图片

  1. InputReader线程通过EventHub监听底层上报的输入事件,一旦收到输入事件则将其放至mInBoundQueue队列,并唤醒InputDispatcher线程

  2. InputDispatcher开始分发输入事件,设置埋雷的起点时间。先检测是否有正在处理的事件(mPendingEvent),如果没有则取出mInBoundQueue队头的事件,并将其赋值给mPendingEvent,且重置ANR的timeout;否则不会从mInBoundQueue中取出事件,也不会重置timeout。然后检查窗口是否就绪(checkWindowReadyForMoreInputLocked),满足以下任一情况,则会进入扫雷状态(检测前一个正在处理的事件是否超时),终止本轮事件分发,否则继续执行步骤3。当应用窗口准备就绪,则将mPendingEvent转移到outBoundQueue队列

    • 对于按键类型的输入事件,则outboundQueue或者waitQueue不为空,

    • 对于非按键的输入事件,则waitQueue不为空,且等待队头时间超时500ms

  3. 当outBoundQueue不为空,且应用管道对端连接状态正常,则将数据从outboundQueue中取出事件,放入waitQueue队列

  4. InputDispatcher通过socket告知目标应用所在进程可以准备开始干活

  5. App在初始化时默认已创建跟中控系统双向通信的socketpair,此时App的包工头(main线程)收到输入事件后,会层层转发到目标窗口来处理

  6. 包工头完成工作后,会通过socket向中控系统汇报工作完成,则中控系统会将该事件从waitQueue队列中移除。

input超时机制为什么是扫雷,而非定时爆炸呢?是由于对于input来说即便某次事件执行时间超过timeout时长,只要用户后续在没有再生成输入事件,则不会触发ANR。 这里的扫雷是指当前输入系统中正在处理着某个耗时事件的前提下,后续的每一次input事件都会检测前一个正在处理的事件是否超时(进入扫雷状态),检测当前的时间距离上次输入事件分发时间点是否超过timeout时长。如果前一个输入事件,则会重置ANR的timeout,从而不会爆炸。

到这里,关于 service ,广播,provider 的 anr 原因都讲清楚了。下面就看看是如何对 anr 信息进行收集的。

六、appNotResponding处理流程

不管是啥 anr ,最终都会调用到 ProcessRecord 的 appNotResponding 方法,下面来看看这个方法里面具体都做了啥:

// ProcessRecord.java    
void appNotResponding(String activityShortComponentName, ApplicationInfo aInfo,
            String parentShortComponentName, WindowProcessController parentProcess,
            boolean aboveSystem, String annotation) {
        ArrayList<Integer> firstPids = new ArrayList<>(5);
        SparseArray<Boolean> lastPids = new SparseArray<>(20);

        mWindowProcessController.appEarlyNotResponding(annotation, () -> kill("anr", true));
     // anr 时间,实际上发生 anr 的时候,此时收集的运行堆栈有可能并不是引起 anr 的堆栈
        long anrTime = SystemClock.uptimeMillis();
        if (isMonitorCpuUsage()) {
            mService.updateCpuStatsNow();
        }

        synchronized (mService) {
            // PowerManager.reboot() can block for a long time, so ignore ANRs while shutting down.  关机时发生 anr 会被忽略,因为可能会引起长时间阻塞
            if (mService.mAtmInternal.isShuttingDown()) {
                Slog.i(TAG, "During shutdown skipping ANR: " + this + " " + annotation);
                return;
            } else if (isNotResponding()) {
                Slog.i(TAG, "Skipping duplicate ANR: " + this + " " + annotation);
                return;
            } else if (isCrashing()) {
                Slog.i(TAG, "Crashing app skipping ANR: " + this + " " + annotation);
                return;
            } else if (killedByAm) {
                Slog.i(TAG, "App already killed by AM skipping ANR: " + this + " " + annotation);
                return;
            } else if (killed) {
                Slog.i(TAG, "Skipping died app ANR: " + this + " " + annotation);
                return;
            }

            // In case we come through here for the same app before completing
            // this one, mark as anring now so we will bail out.  这样可以避免重复进入
            setNotResponding(true);
 
            // Log the ANR to the event log.  记录 anr 到 eventlog
            EventLog.writeEvent(EventLogTags.AM_ANR, userId, pid, processName, info.flags,
                    annotation);

            // Dump thread traces as quickly as we can, starting with "interesting" processes.  将当前进程添加到 firstPids 中
            firstPids.add(pid);

            // Don‘t dump other PIDs if it‘s a background ANR
            if (!isSilentAnr()) {
                int parentPid = pid;
                if (parentProcess != null && parentProcess.getPid() > 0) {
                    parentPid = parentProcess.getPid();
                }
                if (parentPid != pid) firstPids.add(parentPid);
          // 将system_server进程添加到firstPids
                if (MY_PID != pid && MY_PID != parentPid) firstPids.add(MY_PID);

                for (int i = getLruProcessList().size() - 1; i >= 0; i--) {
                    ProcessRecord r = getLruProcessList().get(i);
                    if (r != null && r.thread != null) {
                        int myPid = r.pid;
                        if (myPid > 0 && myPid != pid && myPid != parentPid && myPid != MY_PID) {
                            if (r.isPersistent()) { 
                                firstPids.add(myPid); // 将persistent进程添加到firstPids
                                if (DEBUG_ANR) Slog.i(TAG, "Adding persistent proc: " + r);
                            } else if (r.treatLikeActivity) {
                                firstPids.add(myPid);  // 使用了 BIND_TREAT_LIKE_ACTIVITY
                                if (DEBUG_ANR) Slog.i(TAG, "Adding likely IME: " + r);
                            } else {
                                lastPids.put(myPid, Boolean.TRUE);  // 其他进程添加到lastPids
                                if (DEBUG_ANR) Slog.i(TAG, "Adding ANR proc: " + r);
                            }
                        }
                    }
                }
            }
        }

        // Log the ANR to the main log.  记录 anr 到 mainlog 
        StringBuilder info = new StringBuilder();
        info.setLength(0);
        info.append("ANR in ").append(processName);
        if (activityShortComponentName != null) {
            info.append(" (").append(activityShortComponentName).append(")");
        }
        info.append("\n");
        info.append("PID: ").append(pid).append("\n");
        if (annotation != null) {
            info.append("Reason: ").append(annotation).append("\n");
        }
        if (parentShortComponentName != null
                && parentShortComponentName.equals(activityShortComponentName)) {
            info.append("Parent: ").append(parentShortComponentName).append("\n");
        }
     // 创建 cpu tracker 对象
        ProcessCpuTracker processCpuTracker = new ProcessCpuTracker(true);

        // don‘t dump native PIDs for background ANRs unless it is the process of interest
        String[] nativeProcs = null;
        if (isSilentAnr()) {
            for (int i = 0; i < NATIVE_STACKS_OF_INTEREST.length; i++) {
                if (NATIVE_STACKS_OF_INTEREST[i].equals(processName)) {
                    nativeProcs = new String[] { processName };
                    break;
                }
            }
        } else {
            nativeProcs = NATIVE_STACKS_OF_INTEREST;
        }
     // 获取 native 进程
        int[] pids = nativeProcs == null ? null : Process.getPidsForCommands(nativeProcs);
        ArrayList<Integer> nativePids = null;

        if (pids != null) {
            nativePids = new ArrayList<>(pids.length);
            for (int i : pids) {
                nativePids.add(i);
            }
        }

        // For background ANRs, don‘t pass the ProcessCpuTracker to
        // avoid spending 1/2 second collecting stats to rank lastPids.  收集堆栈信息
        File tracesFile = ActivityManagerService.dumpStackTraces(firstPids,
                (isSilentAnr()) ? null : processCpuTracker, (isSilentAnr()) ? null : lastPids,
                nativePids);

        String cpuInfo = null;
     // 添加 cpu 信息
if (isMonitorCpuUsage()) { mService.updateCpuStatsNow(); synchronized (mService.mProcessCpuTracker) { cpuInfo = mService.mProcessCpuTracker.printCurrentState(anrTime); } info.append(processCpuTracker.printCurrentLoad()); info.append(cpuInfo); } info.append(processCpuTracker.printCurrentState(anrTime)); Slog.e(TAG, info.toString()); if (tracesFile == null) { // There is no trace file, so dump (only) the alleged culprit‘s threads to the log Process.sendSignal(pid, Process.SIGNAL_QUIT); } StatsLog.write(StatsLog.ANR_OCCURRED, uid, processName, activityShortComponentName == null ? "unknown": activityShortComponentName, annotation, (this.info != null) ? (this.info.isInstantApp() ? StatsLog.ANROCCURRED__IS_INSTANT_APP__TRUE : StatsLog.ANROCCURRED__IS_INSTANT_APP__FALSE) : StatsLog.ANROCCURRED__IS_INSTANT_APP__UNAVAILABLE, isInterestingToUserLocked() ? StatsLog.ANROCCURRED__FOREGROUND_STATE__FOREGROUND : StatsLog.ANROCCURRED__FOREGROUND_STATE__BACKGROUND, getProcessClassEnum(), (this.info != null) ? this.info.packageName : ""); final ProcessRecord parentPr = parentProcess != null ? (ProcessRecord) parentProcess.mOwner : null;
    // 将traces文件 和 CPU使用率信息保存到dropbox,即data/system/dropbox目录 mService.addErrorToDropBox(
"anr", this, processName, activityShortComponentName, parentShortComponentName, parentPr, annotation, cpuInfo, tracesFile, null); if (mWindowProcessController.appNotResponding(info.toString(), () -> kill("anr", true), () -> { synchronized (mService) { mService.mServices.scheduleServiceTimeoutLocked(this); } })) { return; } synchronized (mService) { // mBatteryStatsService can be null if the AMS is constructed with injector only. This // will only happen in tests. if (mService.mBatteryStatsService != null) { mService.mBatteryStatsService.noteProcessAnr(processName, uid); }        // 杀死后台 anr 的进程 if (isSilentAnr() && !isDebugging()) {
kill(
"bg anr", true); return; } // Set the app‘s notResponding state, and look up the errorReportReceiver makeAppNotRespondingLocked(activityShortComponentName, annotation != null ? "ANR " + annotation : "ANR", info.toString()); // mUiHandler can be null if the AMS is constructed with injector only. This will only // happen in tests. if (mService.mUiHandler != null) { // Bring up the infamous App Not Responding dialog Message msg = Message.obtain(); msg.what = ActivityManagerService.SHOW_NOT_RESPONDING_UI_MSG; msg.obj = new AppNotRespondingDialog.Data(this, aInfo, aboveSystem);          // 发送 anr 弹窗信息 mService.mUiHandler.sendMessage(msg); } } }

/**
* Unless configured otherwise, swallow ANRs in background processes & kill the process.
* Non-private access is for tests only. 如果是后台 ANR 会被吞噬,不会提示 anr,
*/
@VisibleForTesting
boolean isSilentAnr() {
return !getShowBackground() && !isInterestingForBackgroundTraces();
}

当发生ANR时, 会按顺序依次执行:

  1. 输出ANR Reason信息到EventLog. 也就是说ANR触发的时间点最接近的就是EventLog中输出的am_anr信息;

  2. 收集并输出重要进程列表中的各个线程的traces信息,该方法较耗时; 【见小节2】

  3. 输出当前各个进程的CPU使用情况以及CPU负载情况;

  4. 将traces文件和 CPU使用情况信息保存到dropbox,即data/system/dropbox目录

  5. 根据进程类型,来决定直接后台杀掉,还是弹框告知用户.

ANR输出重要进程的traces信息,这些进程包含:

  • firstPids队列:第一个是ANR进程,第二个是system_server,剩余是所有persistent进程;

  • Native队列:是指/system/bin/目录的mediaserver,sdcard 以及surfaceflinger进程;

  • lastPids队列: 是指mLruProcesses中的不属于firstPids的所有进程。

下面看下收集各进程堆栈信息逻辑:

// AMS
   /**
     * If a stack trace dump file is configured, dump process stack traces.
     * @param firstPids of dalvik VM processes to dump stack traces for first
     * @param lastPids of dalvik VM processes to dump stack traces for last
     * @param nativePids optional list of native pids to dump stack crawls
     */
    public static File dumpStackTraces(ArrayList<Integer> firstPids,
            ProcessCpuTracker processCpuTracker, SparseArray<Boolean> lastPids,
            ArrayList<Integer> nativePids) {
        ArrayList<Integer> extraPids = null;

        Slog.i(TAG, "dumpStackTraces pids=" + lastPids + " nativepids=" + nativePids);

        // Measure CPU usage as soon as we‘re called in order to get a realistic sampling
        // of the top users at the time of the request.
        if (processCpuTracker != null) {
            processCpuTracker.init();
            try {
                Thread.sleep(200); // 等待 200ms 
            } catch (InterruptedException ignored) {
            }
       // 测量CPU使用情况
            processCpuTracker.update();

            // We‘ll take the stack crawls of just the top apps using CPU. 收集 5 个最高使用 cpu 的 进程 
            final int N = processCpuTracker.countWorkingStats();
            extraPids = new ArrayList<>();
            for (int i = 0; i < N && extraPids.size() < 5; i++) {
                ProcessCpuTracker.Stats stats = processCpuTracker.getWorkingStats(i);
                if (lastPids.indexOfKey(stats.pid) >= 0) {
                    if (DEBUG_ANR) Slog.d(TAG, "Collecting stacks for extra pid " + stats.pid);
                    extraPids.add(stats.pid);
                } else {
                    Slog.i(TAG, "Skipping next CPU consuming process, not a java proc: "
                            + stats.pid);
                }
            }
        }

        final File tracesDir = new File(ANR_TRACE_DIR);
        // Each set of ANR traces is written to a separate file and dumpstate will process
        // all such files and add them to a captured bug report if they‘re recent enough.  每一个 anr 都保存在单独的文件中的
        maybePruneOldTraces(tracesDir);

        // NOTE: We should consider creating the file in native code atomically once we‘ve
        // gotten rid of the old scheme of dumping and lot of the code that deals with paths
        // can be removed.  创建 anr 文件
        File tracesFile = createAnrDumpFile(tracesDir);
        if (tracesFile == null) {
            return null;
        }
     // 收集 anr 堆栈
        dumpStackTraces(tracesFile.getAbsolutePath(), firstPids, nativePids, extraPids);
        return tracesFile;
    }

   // 创建 anr 文件
    private static synchronized File createAnrDumpFile(File tracesDir) {
        if (sAnrFileDateFormat == null) {
            sAnrFileDateFormat = new SimpleDateFormat("yyyy-MM-dd-HH-mm-ss-SSS");
        }

        final String formattedDate = sAnrFileDateFormat.format(new Date());
     // anr 文件名是 anr_加上时间
final File anrFile = new File(tracesDir, "anr_" + formattedDate);      ...return anrFile; }
   // 收集堆栈逻辑
public static void dumpStackTraces(String tracesFile, ArrayList<Integer> firstPids, ArrayList<Integer> nativePids, ArrayList<Integer> extraPids) { Slog.i(TAG, "Dumping to " + tracesFile); // We don‘t need any sort of inotify based monitoring when we‘re dumping traces via // tombstoned. Data is piped to an "intercept" FD installed in tombstoned so we‘re in full // control of all writes to the file in question.       // We must complete all stack dumps within 20 seconds. 在 20s 里面完成堆栈收集工作,未完成也会直接退出 long remainingTime = 20 * 1000; // First collect all of the stacks of the most important pids. 收集最重要的几个进程的信息 if (firstPids != null) { int num = firstPids.size(); for (int i = 0; i < num; i++) { Slog.i(TAG, "Collecting stacks for pid " + firstPids.get(i)); final long timeTaken = dumpJavaTracesTombstoned(firstPids.get(i), tracesFile, remainingTime); remainingTime -= timeTaken; if (remainingTime <= 0) { Slog.e(TAG, "Aborting stack trace dump (current firstPid=" + firstPids.get(i) + "); deadline exceeded."); return; } } } // Next collect the stacks of the native pids 收集 native 堆栈 if (nativePids != null) { for (int pid : nativePids) { Slog.i(TAG, "Collecting stacks for native pid " + pid); final long nativeDumpTimeoutMs = Math.min(NATIVE_DUMP_TIMEOUT_MS, remainingTime); final long start = SystemClock.elapsedRealtime(); Debug.dumpNativeBacktraceToFileTimeout( pid, tracesFile, (int) (nativeDumpTimeoutMs / 1000)); final long timeTaken = SystemClock.elapsedRealtime() - start; remainingTime -= timeTaken;
          ... 超时则停止收集
} } // Lastly, dump stacks for all extra PIDs from the CPU tracker. 最后是前面最高的 5 个 if (extraPids != null) { for (int pid : extraPids) { Slog.i(TAG, "Collecting stacks for extra pid " + pid); final long timeTaken = dumpJavaTracesTombstoned(pid, tracesFile, remainingTime); remainingTime -= timeTaken;      ... } } Slog.i(TAG, "Done dumping"); }
该方法的主要功能,依次输出:
  1. 收集firstPids进程的stacks;
    • 第一个是发生ANR进程;

    • 第二个是system_server;

    • mLruProcesses中所有的persistent进程;

  2. 收集Native进程的stacks;(dumpNativeBacktraceToFile)

    • 依次是mediaserver,sdcard,surfaceflinger进程;

  3. 收集lastPids进程的stacks;;

    • 依次输出CPU使用率top 5的进程; 

七、总结

当出现ANR时,都是调用到AMS.appNotResponding()方法,当然这里介绍的 provider 例外.

Timeout时长

  • 对于前台服务,则超时为SERVICE_TIMEOUT = 20s;

  • 对于后台服务,则超时为SERVICE_BACKGROUND_TIMEOUT = 200s

  • 对于前台广播,则超时为BROADCAST_FG_TIMEOUT = 10s;

  • 对于后台广播,则超时为BROADCAST_BG_TIMEOUT = 60s;

  • ContentProvider超时为CONTENT_PROVIDER_PUBLISH_TIMEOUT = 10s;

超时检测

Service超时检测机制:

  • 超过一定时间没有执行完相应操作来触发移除延时消息,则会触发anr;

BroadcastReceiver超时检测机制:

  • 有序广播的总执行时间超过 2* receiver个数 * timeout时长,则会触发anr;

  • 有序广播的某一个receiver执行过程超过 timeout时长,则会触发anr;

另外:

  • 对于Service, Broadcast, Input发生ANR之后,最终都会调用AMS.appNotResponding;

  • 对于provider,在其进程启动时publish过程可能会出现ANR, 则会直接杀进程以及清理相应信息,而不会弹出ANR的对话框. appNotRespondingViaProvider()过程会走appNotResponding(), 这个就不介绍了,很少使用,由用户自定义超时时间. 

最后,真诚感谢 gityuan 的博客。

参考文章 

http://gityuan.com/2016/12/02/app-not-response/

http://gityuan.com/2016/07/02/android-anr/

http://gityuan.com/2017/01/01/input-anr/

http://gityuan.com/2019/04/06/android-anr/

深入理解 Android ANR 触发原理以及信息收集过程

原文:https://www.cnblogs.com/huansky/p/14954020.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!