存储Integer类型的整数并遍历
public class TreeSetDemo01 {
public static void main(String[] args) {
//创建集合对象
TreeSet<Integer> ts = new TreeSet<Integer>();
//添加元素
ts.add(10);
ts.add(40);
ts.add(30);
ts.add(50);
ts.add(20);
ts.add(30);
//1.遍历集合(增强foreach)
for(Integer i : ts) {
System.out.println(i);
}
System.out.println("===============================");
//2.遍历集合(迭代器)
Iterator<Integer> it = ts.iterator(); //如果不指定迭代器类型为Integer,则next()返回值默认Object类型
while(it.hasNext()){
Integer i = it.next();
System.out.println(i);
}
}
}
案例需求
实现步骤
代码实现
学生类
public class Student implements Comparable<Student>{
private String name;
private int age;
public Student() {
}
public Student(String name, int age) {
this.name = name;
this.age = age;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
@Override
public String toString() {
return "Student{" +
"name=‘" + name + ‘\‘‘ +
", age=" + age +
‘}‘;
}
@Override
public int compareTo(Student o) {
//按照对象的年龄进行排序
//主要判断条件: 按照年龄从小到大排序
int result = this.age - o.age;
//次要判断条件: 年龄相同时,按照姓名的字母顺序排序
result = result == 0 ? this.name.compareTo(o.getName()) : result;
return result;
}
}
测试类
public class MyTreeSet2 {
public static void main(String[] args) {
//创建集合对象
TreeSet<Student> ts = new TreeSet<>();
//创建学生对象
Student s1 = new Student("zhangsan",28);
Student s2 = new Student("lisi",27);
Student s3 = new Student("wangwu",29);
Student s4 = new Student("zhaoliu",28);
Student s5 = new Student("qianqi",30);
//把学生添加到集合
ts.add(s1);
ts.add(s2);
ts.add(s3);
ts.add(s4);
ts.add(s5);
//遍历集合
for (Student student : ts) {
System.out.println(student);
}
}
}
案例需求
实现步骤
代码实现
老师类
public class Teacher {
private String name;
private int age;
public Teacher() {
}
public Teacher(String name, int age) {
this.name = name;
this.age = age;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
@Override
public String toString() {
return "Teacher{" +
"name=‘" + name + ‘\‘‘ +
", age=" + age +
‘}‘;
}
}
测试类
public class MyTreeSet4 {
public static void main(String[] args) {
//创建集合对象(匿名内部类)
TreeSet<Teacher> ts = new TreeSet<>(new Comparator<Teacher>() {
@Override
public int compare(Teacher o1, Teacher o2) {
//o1表示现在要存入的那个元素
//o2表示已经存入到集合中的元素
//主要条件
int result = o1.getAge() - o2.getAge();
//次要条件
result = result == 0 ? o1.getName().compareTo(o2.getName()) : result;
return result;
}
//也可使用Lambda表达式实现
/*TreeSet<Teacher> ts = new TreeSet<>((Teacher o1, Teacher o2)-> {
//o1表示现在要存入的那个元素
//o2表示已经存入到集合中的元素
//主要条件
int result = o1.getAge() - o2.getAge();
//次要条件
result = result == 0 ? o1.getName().compareTo(o2.getName()) : result;
return result;
});*/
});
//创建老师对象
Teacher t1 = new Teacher("zhangsan",23);
Teacher t2 = new Teacher("lisi",22);
Teacher t3 = new Teacher("wangwu",24);
Teacher t4 = new Teacher("zhaoliu",24);
//把老师添加到集合
ts.add(t1);
ts.add(t2);
ts.add(t3);
ts.add(t4);
//遍历集合
for (Teacher teacher : ts) {
System.out.println(teacher);
}
}
}
那么下面解释一下什么算是“自然排序不满足现在的需求”:
自然排序是自定义类实现Comparable接口,但是比如String的底层代码已经把Comparable接口实现了。
String类默认的排序规则是字典序排列,如果我们想要实现按照英文单词长度从短到长排列,而我们又不可能去修改String的底层源码,自然排序就不再满足需求。此时应该考虑比较器排序法。
public static void main(String[] args) {
Set<String> set = new TreeSet<>((String a,String b)->{
return a.length()-b.length();
}); //比较器排序
String a = "ssd";
String b = "z";
String c = "sdfsf";
set.add(a);
set.add(b);
set.add(c);
for (String s : set) {
System.out.println(s);
}
}
输出:
z
ssd
sdfsf
存储字符串并遍历
public class HashSetDemo {
public static void main(String[] args) {
//创建集合对象
HashSet<String> set = new HashSet<String>();
//添加元素
set.add("hello");
set.add("world");
set.add("java");
//不包含重复元素的集合
set.add("world");
//遍历
for(String s : set) {
System.out.println(s);
}
}
}
哈希值简介
? 是JDK根据对象的地址或者字符串或者数字算出来的int类型的数值
如何获取哈希值
? Object类中的public int hashCode():返回对象的哈希码值
哈希值的特点
哈希表是一个数组和单向链表的结合体。
数组:在查询方面效率很高,随机增删方面效率很低。
单向链表:在随机增删方面效率较高,在查询方面效率很低。
哈希表将以上的两种数据结构融合在一起,充分发挥它们各自的优点。
JDK1.8以前
? 数组 + 链表
JDK1.8以后
节点个数少于等于8个
? 数组 + 链表
节点个数多于8个:链表变成红黑树
? 数组 + 红黑树
节点个数多于8个,之后又小于6个
红黑树变回链表
原因分析:
若存储的对象的哈希值相同,则对象会在该哈希值对应的数组元素所对应的链表中进行遍历,同时调用equals方法比较属性值,这就涉及到遍历的效率问题,大量查询,大量插入和删除。虽然ALV树是高度平衡的,所以查找起来肯定比红黑树快,但是红黑树在插入和删除方面的性能就远远不是ALV树所能比的了。所以最终用红黑树来改进哈希表。
案例需求
代码实现
学生类
public class Student {
private String name;
private int age;
public Student() {
}
public Student(String name, int age) {
this.name = name;
this.age = age;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Student student = (Student) o;
if (age != student.age) return false;
return name != null ? name.equals(student.name) : student.name == null;
}
@Override
public int hashCode() {
int result = name != null ? name.hashCode() : 0;
result = 31 * result + age;
return result;
}
}
测试类
public class HashSetDemo02 {
public static void main(String[] args) {
//创建HashSet集合对象
HashSet<Student> hs = new HashSet<Student>();
//创建学生对象
Student s1 = new Student("林青霞", 30);
Student s2 = new Student("张曼玉", 35);
Student s3 = new Student("王祖贤", 33);
Student s4 = new Student("王祖贤", 33);
//把学生添加到集合
hs.add(s1);
hs.add(s2);
hs.add(s3);
hs.add(s4);
//遍历集合(增强for)
for (Student s : hs) {
System.out.println(s.getName() + "," + s.getAge());
}
}
}
总结
? HashSet集合存储自定义类型元素,要想实现元素的唯一,要求必须重写hashCode方法和equals方法
原文:https://www.cnblogs.com/gonghr/p/14993643.html