from skimage.metrics import structural_similarity as compare_ssim import cv2 # 加载两张图片并将他们转换为灰度 imageA = cv2.imread(r"/Users/dcc/Desktop/333.JPG") imageB = cv2.imread(r"/Users/dcc/Desktop/4444.JPG") grayA = cv2.cvtColor(imageA, cv2.COLOR_BGR2GRAY) grayB = cv2.cvtColor(imageB, cv2.COLOR_BGR2GRAY) # 计算两个灰度图像之间的结构相似度指数 (score, diff) = compare_ssim(grayA, grayB, full=True) diff = (diff * 255).astype("uint8") print("SSIM:{}".format(score)) #找到不同点的轮廓以致于我们可以在被标识为“不同”的区域周围放置矩形 thresh = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1] contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # #找到一系列区域,在区域周围放置矩形 for c in contours: (x, y, w, h) = cv2.boundingRect(c) cv2.rectangle(imageA, (x,y), (x+w,y+h), (0,0,255), 2) cv2.rectangle(imageB, (x,y), (x+w,y+h), (0,0,255), 2) #用cv2.imshow 展现最终对比之后的图片, cv2.imwrite 保存最终的结果图片 cv2.imshow("Modified", imageB) cv2.imwrite(r"/Users/dcc/Desktop/99999999999.png", imageB) cv2.waitKey(0)
非原著,网上的比较老了,执行就报错,所以重新搞了一个版本
原文:https://www.cnblogs.com/jueshilaozhongyi/p/15027396.html