首页 > 编程语言 > 详细

java实现计算最优现金优惠券组合

时间:2021-08-10 16:35:28      阅读:21      评论:0      收藏:0      [点我收藏+]

java实现计算最优现金优惠券组合

在众多可叠加现金类型优惠券中(比如100减5,200减12等),选出可打折金额最大的组合。

下面代码

package com.dk.common.util.algo;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

/**
 * 
 * 计算最优优惠券组合
 *
 */
public class CalcDiscountCouponOptimalCombination {

	/// ***** 测试
	public static void main(String[] args) {

		double max = 600;

		List<Item> list = new ArrayList<>();
		list.add(new Item(100, 2));
		list.add(new Item(100, 3));
		list.add(new Item(300, 3));
		list.add(new Item(300, 9));
		list.add(new Item(300, 4));
		list.add(new Item(200, 4));
		list.add(new Item(100, 2));
		list.add(new Item(200, 9));
		list.add(new Item(300, 4));
		list.add(new Item(100, 3));
		list.add(new Item(230, 3));

		list.add(new Item(300, 3));
		list.add(new Item(500, 9));
		list.add(new Item(300, 4));
		list.add(new Item(100, 4));
		list.add(new Item(100, 2));
		list.add(new Item(400, 9));
		list.add(new Item(300, 4));
		list.add(new Item(100, 3));
		list.add(new Item(230, 3));

		for (int i = 0; i < 5; i++) {
			list.add(new Item(300, 3));
			list.add(new Item(500, 9));
			list.add(new Item(300, 4));
			list.add(new Item(100, 4));
			list.add(new Item(100, 2));
			list.add(new Item(400, 9));
			list.add(new Item(300, 4));
			list.add(new Item(100, 3));
			list.add(new Item(230, 3));
			list.add(new Item(230, 3));
		}

		// ************************

		// 券数量多的,建议先按“折扣限制”从大到小排序,可以减少逻辑计算时间
		list.sort((o1, o2) -> o1.deduct == o2.deduct ? 0 : o1.deduct > o2.deduct ? -1 : 1);

		Map<String, Double> maxReduceIdxIssMap = calcMaxReduceIdxIssMap(list, max);
		System.out.println(maxReduceIdxIssMap);

		for (String idxIss : maxReduceIdxIssMap.keySet()) {
			System.out.println("-------------------------------------");
			System.out.println(idxIss);

			String[] idxIsArr = idxIss.split("");
			for (int idx = 0; idx < idxIsArr.length; idx++) {
				String is = idxIsArr[idx];
				if ("1".equals(is)) {
					System.out.println(idx + ": " + list.get(idx));
				}
			}

		}

	}

	/**
	 * 计算最大优惠组合列表
	 */
	public static Map<String, Double> calcMaxReduceIdxIssMap(List<Item> list, double maxAstrict) {
		Map<String, Double> maxReduceIdxIssMap = new HashMap<>();// 统计极限组合

		int len = list.size();
		LoopRear lr = new LoopRear() {
			double currMaxReduce = 0;

			// idxIss 由0、1组成,1所在下标表示对应项参与了此组合
			@Override
			public boolean runRear(int start, String idxIss, double deductSum, double reduceSum) {
				boolean haveRear = false;// 后面流程有没有符合条件的子类组合
				String pad = "1";
				for (int i = start; i < len; i++) {
					Item item = list.get(i);
					double currDeductSum = deductSum + item.deduct;// 当前组合折扣限制总和
					double currReduceSum = reduceSum + item.reduce;// 当前组合折扣额度总和
					if (currDeductSum <= maxAstrict) {
						haveRear = true;// 当前组合限制总和小于总金额,表示当前组合的父类不是极限组合(存在子类组合)
						String currIdxIss = idxIss + pad;
						boolean haveRearRear = this.runRear(i + 1, currIdxIss, currDeductSum, currReduceSum);// 是否存在子类组合
						if (!haveRearRear) {
							// 不存在子类组合,表示当前组合为一个极限组合
							// 比对之前的折扣金额,只保留最大折扣金额的
							if (currReduceSum > currMaxReduce) {
								currMaxReduce = currReduceSum;
								maxReduceIdxIssMap.clear();
								maxReduceIdxIssMap.put(currIdxIss, currReduceSum);
							} else if (currReduceSum == currMaxReduce) {
								maxReduceIdxIssMap.put(currIdxIss, currReduceSum);
							}
						}
					}
					pad = "0" + pad;// 前面下标的项不参与之后组合,后移一位
				}
				return haveRear;
			}
		};
		lr.runRear(0, "", 0, 0);// 从第一个开始执行

		return maxReduceIdxIssMap;
	}

	public static class Item {
		protected double deduct;// 折扣限制,折扣条件
		protected double reduce;// 折扣额度

		public Item(double deduct, double reduce) {
			super();
			this.deduct = deduct;
			this.reduce = reduce;
		}

		@Override
		public String toString() {
			return reduce + "[" + deduct + "]";
		}
	}

	protected interface LoopRear {
		boolean runRear(int start, String idxIss, double deductSum, double reduceSum);
	}

}

java实现计算最优现金优惠券组合

原文:https://www.cnblogs.com/dken/p/CalcDiscountCouponOptimalCombination.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!