首页 > 其他 > 详细

Hive

时间:2021-08-10 23:26:37      阅读:28      评论:0      收藏:0      [点我收藏+]

转:https://blog.csdn.net/wx1528159409/article/details/84667658

从概念上理解

Hive是基于Hadoop的一个数据仓库工具;它是MapReduce的一个封装,底层就是MapReduce程序;

Hive可以将结构化的数据文件(eg:按照各字段分类的数据)映射成一张虚表,并提供类SQL查询功能;

有了Hive后我们就不用再写麻烦的MapReduce程序了。

从本质上来说;

Hive就是把sql语句转化为MapReduce程序。

Hive没有服务端,它本质是Hadoop或者说是HDFS的一个客户端,对HDFS的数据和Meta store的元数据进行操作;

通常我们启动Hive是通过JDBC客户端操作的;

ps:对比hadoop中,通过命令start-dfs.sh启动HDFS服务端,然后通过hadoop fs -命令来启动HDFS客户端进行实际操作;

服务端是提供后台服务的,客户端是进行具体操作然后让服务端提供对应服务的。

技术分享图片

 

为什么说Hive是基于Hadoop的呢?
(1)Hive处理的数据实际存放在HDFS中,默认路径/user/hive/warehouse;

(2)Hive分析数据的底层实现还是MapReduce程序;

(3)Hive调度资源时,用的是Yarn框架;

(4)在服务器中运行Hive之前需要群起HDFS和YARN。

Hive的优缺点
1. 优点
(1)简单、只需要写SQL语句就行;

(2)Hive常用于数据分析,适合处理离线数据(静态数据);

(3)优势在于处理大数据;

(4)支持用户自定义函数;

ps:mysql适合处理数据的增删改查,适合处理实时数据(动态数据)

2. 缺点
(1)Hive的表达有限,无法表达迭代式算法((第一个MapReducer程序的结果作为另一个MapReducer程序的输入,这种就是迭代式算法));

(2)数据挖掘不擅长(擅长数据挖掘的是Spark);

(3)Hive自动生成MapReduce作业,通常不够智能化,效率比较低;

(4)Hive调优一般比较困难,粒度较粗。

 

Hive

原文:https://www.cnblogs.com/wex1022/p/15125556.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!