import numpy import numpy as np import torch import matplotlib.pyplot as plt import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision import torchvision.transforms as transforms import tensorboard from torch.utils.tensorboard import SummaryWriter # print(tensorboard.__version__) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Assuming that we are on a CUDA machine, this should print a CUDA device: # print(device) ‘‘‘ device="cuda" if torch.cuda.is_available() else "cpu" # print(device) ‘‘‘ torch.set_printoptions(linewidth=120) # Display options for output torch.set_grad_enabled(True) # Already on by default print(torch.__version__, torchvision.__version__, sep=‘\n‘) def get_num_correct(preds, labels): return preds.argmax(dim=1).eq(labels).sum().item() class Network(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5) self.conv2 = nn.Conv2d(in_channels=6, out_channels=12, kernel_size=5) self.fc1 = nn.Linear(in_features=12 * 4 * 4, out_features=120) self.fc2 = nn.Linear(in_features=120, out_features=60) self.out = nn.Linear(in_features=60, out_features=10) def forward(self, t): # (1) input layer t = t # (2) hidden conv layer t = self.conv1(t) t = F.relu(t) t = F.max_pool2d(t, kernel_size=2, stride=2) # (3) hidden conv layer t = self.conv2(t) t = F.relu(t) t = F.max_pool2d(t, kernel_size=2, stride=2) # (4) hidden Linear layer t = t.reshape(-1, 12 * 4 * 4) # -1表示对行没约束,反正是12*4*4列 t = self.fc1(t) t = F.relu(t) # (5) hidden Linear layer t = self.fc2(t) t = F.relu(t) # (6) output layer t = self.out(t) # t=F.softmax(t,dim=1) #此处不使用softmax函数,因为在训练中我们使用了交叉熵损失函数,而在torch.nn函数类中,已经在其输入中隐式的 # 执行了一个softmax操作,这里我们只返回最后一个线性变换的结果,也即是 return t,也即意味着我们的网络将使用softmax操作进行训练,但在 # 训练完成后,将不需要额外的计算操纵。 return t # get data train_set = torchvision.datasets.FashionMNIST( root=‘./data/FashionMNIST‘, train=True, download=True, transform=transforms.Compose([transforms.ToTensor()]) ) data_loader = torch.utils.data.DataLoader(train_set,batch_size=100,shuffle=True) # shuffle=True # from collections import Iterable # # print(isinstance(data_loader,Iterable)) #返回True ##################### # starting out with TensorBoard(Network Graph and Images) 下面一段为生成日志文件的代码,直到tb.close() ##################### tb=SummaryWriter() network=Network() images,labels=next(iter(data_loader)) grid=torchvision.utils.make_grid(images)#网格效用函数 tb.add_image(‘images‘,grid) tb.add_graph(network,images) tb.close() # optimizer = optim.Adam(network.parameters(), lr=0.01) ‘‘‘ for epoch in range(3): total_loss = 0 total_correct = 0 for batch in data_loader: # get batch images, labels = batch images, labels = images.to(device), labels.to(device) preds = network(images) # pass batch loss = F.cross_entropy(preds, labels) # calculate loss optimizer.zero_grad() loss.backward() # calculate gradients optimizer.step() # update weights using the gradient and the learning rate total_loss += loss.item() total_correct += get_num_correct(preds, labels) print(‘epoch:‘, epoch, ‘total_correct:‘, total_correct, ‘total_loss:‘, total_loss) print(total_correct / len(train_set)) ‘‘‘
其中 runs为该代码所在文件夹中位置,日志文件生成后也在这个文件夹里
如下图:
在runs文件夹上点击鼠标右键 有一个open in terminal 点击
打开后如下图所示:
然后再再上图红框右边输入:tensorboard --logdir=日志文件所在的绝对路径
日志文件绝对路径可以直接在runs文件夹右击 有一个copy path 即可
回车后出现一个网址,点击就可以看到tensorboard图:
Win10 pycharm中显示PyTorch tensorboard图
原文:https://www.cnblogs.com/Li-JT/p/15168086.html