首页 > 其他 > 详细

hive mapjoin总结

时间:2021-09-02 06:30:28      阅读:18      评论:0      收藏:0      [点我收藏+]

1.map join无reduce操作,所以没有shuffle。这样可以减少大量的网络I/O。(如:大表文件数500、文件250M,小表20M。map join的网络I/O共50020M,Common join的网络I/O共500250M+20M),同时不需要进行map sort和shuffle sort排序。
2.由于Common join的一个reduce包含两张表的数据,所以进行reduce的join先将一张表的数据加载到内存后才能跟另外一张表的数据join,如果加载的是大表需要reduce大量的内存。
3.由于小表转换为HashTable结构,map join在对数据进行join很快,哈希算法的时间为O(1)。
4.map join需要将小表加载DistributeCache是存在Driver内,大表map从Driver拉取小表数据。所以小表数据量不宜过大。

hive mapjoin总结

原文:https://www.cnblogs.com/successok/p/15206763.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!