Given an integer array arr
and an integer difference
, return the length of the longest subsequence in arr
which is an arithmetic sequence such that the difference between adjacent elements in the subsequence equals difference
.
A subsequence is a sequence that can be derived from arr
by deleting some or no elements without changing the order of the remaining elements.
Example 1:
Input: arr = [1,2,3,4], difference = 1
Output: 4
Explanation: The longest arithmetic subsequence is [1,2,3,4].
Example 2:
Input: arr = [1,3,5,7], difference = 1
Output: 1
Explanation: The longest arithmetic subsequence is any single element.
Example 3:
Input: arr = [1,5,7,8,5,3,4,2,1], difference = -2
Output: 4
Explanation: The longest arithmetic subsequence is [7,5,3,1].
Constraints:
1 <= arr.length <= 105
-104 <= arr[i], difference <= 104
这道题让求给定差值的最长等差子序列,既然是子序列,就表示数字是不用连续的。对于这种数组玩极值的题目,很大的可能就是用动态规划 Dynamic Programming 来做,这道题也不例外。博主最开始想的方法比较简单粗暴,用一个一维的 DP 数组,其中 dp[i] 表示最后一个数字是 arr[i] 的等差子序列的长度,对于状态转移方程就是遍历每个 [0, i-1] 区间的j,若 dp[i] - dp[j] 等于 difference,则用 dp[j]+1 来更新 dp[i],但是这种平方级时间复杂度的方法还是不幸超时了 Time Limit Exceeded,对于一道 Medium 的题目,卡的这么严是博主没有想到的。
那怎么办呢,还有什么更快的方法吗?有的,这里博主先卖个关子,首先来思考一下,为啥上面的解法会超时,因为每次都遍历 arr[i] 前面所有的数字,绝大部分的遍历操作都是无效的,因为差值不是给定的 difference。这里既然差值是确定的,直接通过 arr[i] - difference 就是前一个数字了,只需要快速知道这个数字是否存在,而且最好还能知道以这个数字结尾的等差子序列的长度。这样的话,用 HashMap 建立一个映射就比较方便了,于是乎 dp[i] 就表示以数字i结尾的等差子序列的长度,更新的时候也很方便,用 1 + dp[i-difference] 来更新 dp[i],然后用 dp[i] 来更新结果 res 即可,参见代码如下:
class Solution {
public:
int longestSubsequence(vector<int>& arr, int difference) {
int res = 0;
unordered_map<int, int> dp;
for (int i : arr) {
dp[i] = 1 + dp[i - difference];
res = max(dp[i], res);
}
return res;
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/1218
参考资料:
https://leetcode.com/problems/longest-arithmetic-subsequence-of-given-difference/
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] 1218. Longest Arithmetic Subsequence of Given Difference 最长定差子序列
原文:https://www.cnblogs.com/grandyang/p/15242197.html