首页 > 其他 > 详细

关于样本方差的无偏估计

时间:2021-09-15 20:44:42      阅读:6      评论:0      收藏:0      [点我收藏+]

1.为什么样本方差的分母是n-1

 首先给出样本方差的计算方法:

\[S^2=\frac{1}{n-1}\sum_{i=1}^{n}{(X_i-\bar{X})}^2\]

其中样本均值

\[\bar{X}=\frac{1}{n}\sum_{i=1}^{n}X_i\]

总体方差(在总体均值$\mu$已知的情况下)的定义是

\[{\sigma}^2=\frac{1}{n}\sum_{i=1}^{n}{(X_i-\mu)}^2\]

那为什么样本方差的分母要使用n-1而不是n,证明如下:

======插入:证明需要用到以下性质======

(1)期望的线性可加性:若$X$和$Y$是两个随机变量,则他们的期望的和等于和的期望,即

\[E(aX+bY)=aE(X)+bE(Y)\]

(2)方差的性质

 若$X$和$Y$相互独立,则

\[D(aX+bY)=a^2DX+b^2DY\]

(3)若总体$X$的均值、方差均存在,且$EX=\mu$,$DX={\sigma}^2$,则

\[E\bar{X}=\mu\]

\[D\bar{X}=\frac{\sigma^2}{n}\]

证明:

\[E\bar{X}=E\left(\frac{1}{n}\sum_{i=1}^{n}X_i\right)=\frac{1}{n}\sum_{i=1}^{n}{EX_i}=\frac{1}{n}\sum_{i=1}^{n}EX=\mu\]

\[D\bar{X}=D\left(\frac{1}{n}\sum_{i=1}^{n}X_i\right)=\frac{1}{n^2}\sum_{i=1}^{n}{DX_i}=\frac{1}{n^2}\sum_{i=1}^{n}DX=\frac{1}{n^2}n\sigma^2=\frac{\sigma^2}{n}\]

======

\[E\left(S^2\right)=\frac{1}{n-1}E\left(\sum_{i=1}^{n}\left(X_i-\bar{X}\right)^2\right)=\frac{1}{n-1}E\left(\sum_{i=1}^{n}\left(X_i-\mu+\mu-\bar{X}\right)^2\right)=\frac{1}{n-1}E\left(\sum_{i=1}^{n}\left(\left(X_i-\mu\right)^2-2(X_i-\mu)(\bar{X}-\mu)+\left(\bar{X}-\mu\right)^2\right)\right)=\frac{1}{n-1}E\left(\sum_{i=1}^{n}{\left(X_i-\mu\right)^2-2(\bar{X}-\mu)\sum_{i=1}^{n}{(X_i-\mu)}+{n\left(\bar{X}-\mu\right)}^2}\right)=\frac{1}{n-1}E\left(\sum_{i=1}^{n}{\left(X_i-\mu\right)^2-2n(\bar{X}-\mu)(\bar{X}-\mu)+{n\left(\bar{X}-\mu\right)}^2}\right)=\frac{1}{n-1}E\left(\sum_{i=1}^{n}{\left(X_i-\mu\right)^2-{n\left(\bar{X}-\mu\right)}^2}\right)=\frac{1}{n-1}\sum_{i=1}^{n}{E(\left(X_i-\mu\right)^2)-nE(\left(\bar{X}-\mu\right)^2)}=\frac{1}{n-1}\left(n\sigma^2-n\frac{\sigma^2}{n}\right)=\sigma^2\]

因此样本方差$S^2$是总体方差$\sigma^2$的无偏估计。

2.什么是无偏估计

 无偏估计是用样本统计量来估计总体参数时的一种无偏推断。估计量的数学期望等于被估计参数的真实值,则称此估计量为被估计参数的无偏估计,即具有无偏性,是一种用于评价估计量优良性的准则。无偏估计的意义是:在多次重复下,它们的平均数接近所估计的参数真值。——来源于百度百科

3.软件的计算方法

在matlab和R中,默认使用的都是样本标准差,即分母是n-1,如下。

>> std([1,2,3])
ans =
     1
> sd(c(1,2,3))
[1] 1

而在Python中,需要注意默认是用的分母为n的标注差,需要加ddof = 1才是样本标准差。

import numpy as np
a=np.std([1,2,3])
b=np.std([1,2,3],ddof = 1)
print(‘a=‘,a,‘,b=‘,b)

a= 0.816496580927726 ,b= 1.0

4.关于是否有偏的测试

mus=[];
sigmas=[];
means=[];
std_ns=[];
std_n_1s=[];
mse_n=[];
mse_n_1=[];
for i=1:10000
    mu=rand;
    sigma=rand;
    r = normrnd(mu,sigma,[1,20]);
    mus=[mus,mu];
    sigmas=[sigmas,sigma];
    means=[means,mean(r)];
    std_ns=[std_ns,std_n(r)];
    std_n_1s=[std_n_1s,std_n_1(r)];
    mse_n=[mse_n,mean(std_ns-sigmas)];
    mse_n_1=[mse_n_1,mean(std_n_1s-sigmas)];
end
plot(mse_n);hold on;plot(mse_n_1);
hold off;
legend(‘std n‘,‘std n-1‘);
function s=std_n(x)
s=sqrt(sum((x-mean(x)).^2)/length(x));
end
function s=std_n_1(x)
s=sqrt(sum((x-mean(x)).^2)/(length(x)-1));
end

技术分享图片

可以看到,使用n为分母计算出的比n-1更加精确。 

关于样本方差的无偏估计

原文:https://www.cnblogs.com/dingdangsunny/p/15265412.html

(0)
(0)
   
举报
评论 一句话评论(0
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!