#GCD最大公约数
1 //求a和b的最大公约数 2 int GCD(int a, int b) 3 { 4 if (a % b == 0) 5 return b; 6 else 7 return GCD(b, a % b); 8 }
#翻转字符串
1 string reverseString(string str) 2 { 3 if (str.length() == 0) 4 return ""; 5 else 6 return reverseString(str.substr(1)) + str[0]; 7 }
#幂函数
//折半求幂, 效率提高 int Raise(int base, int exp) { if (exp == 0) return 1; else { int half = Raise(base, exp / 2); if (exp % 2 == 0) //奇偶情况不同 return half * half; else return base * half * half; } }
#回文Palindrome
1 //递归判断是否为回文,比较相等且剩余的字串为回文则是回文 2 bool isPalindrome(string s) 3 { 4 if (s.lenth() <= 1) 5 return true; 6 else 7 return s[0] == s[s.length() - 1] && 8 isPalindrome(s.substr(1, s.length() - 2)); 9 }
#BinarySearch
//二分查找的递归实现 int BSearch(Vector<string> &v, int start, int end, string key) { if (start > end) return false; int mid = (start + end) / 2; if (v[mid] == key) return mid; else if (v[mid] < key) return BSearch(v, mid + 1, end, key); else return BSearch(v, start, mid - 1, key); }
#Give N things, how many different ways can you choose K of them?
//N个数中找出K个数有多少种方法 int CNK(int n, int k) { if (k == 0 || k == n) retrun 1; else return CNK(n - 1, k) + CNK(n - 1, k - 1); } //将第k个数单独拿出来,那么找出k个数就有两种情况:包含k和不包含k。 //包含k需要在n - 1中找出k - 1个数,有CNK(n - 1,k - 1)种情况; //不包含k需要在n - 1中找出k个数 //两种情况相加即为总共的情况
#A familiar fractal
1 void DrawFractal(double x, double y, double width, double height) 2 { 3 DrawTraingle(x, y, width, height); 4 if (width < 0.2 || height < 0.2) { 5 return; 6 } 7 double halfWidth = width / 2; 8 double halfHeight = height / 2; 9 DrawFractal(x, y, halfWidth, halfHeight); 10 DrawFractal(x + halfWidth, y, halfWidth, halfHeight); 11 DrawFractal(x + halfWidth / 2, y + halfHeight, halfWidth, halfHeight); 12 }
#Random pseudo-Mondrian
1 void DrawMondrian(double x, doouble y, double w, double h) 2 { 3 if (w < 1 || y < 1) 4 return; 5 Fillrectangle(x, y, w, h, RandomColor()); 6 switch(RandomInteger(0, 2)) { 7 case 0: 8 break; 9 case 1: 10 double midX = RandomReal(0, w); 11 DrawBlackLine(x + midX, y, h); 12 DrawMondrian(x, y, midX, h); 13 DrawMondrian(midX, y, w - midX, h); 14 break; 15 case 2: 16 double midY = Random(0, h); 17 DrawBlackLine(x, y + midY, w); 18 DrawMondrian(x, y, w, midY); 19 DrawMondrian(x, y + midY, w, h - midY); 20 break; 21 } 22 }
#Hanoi
1 //汉诺塔,将n个塔从src移动到dst上,tmp为临时借用 2 MoveTower(int n, char src, char dst, char tmp) 3 { 4 if (n > 0) { 5 MoveTower(n - 1, src, tmp, dst); //只需要将n-1个从src移动到tmp上,借助dst 6 MoveStringDisk(src, dst); //将第n个从src移动到dst上,只需要一步; 7 MoveTower(n - 1, tmp, dst, src); //再将n-1个从tmp上移动到dst上,借助src; 8 } 9 }
#全排列Permute strategy
1 //全排列,如:将字符串“ABCD”中出现的字符不同的组合全部输出 2 //soFar表示已经排列好的字符串,rest表示还需要继续排列的字符串 3 void RecPermute(string soFar, string rest) 4 { 5 //如果rest为空,即所有字符排列完毕,输出soFar 6 if (rest == "") { 7 cout << soFar << endl; 8 } else { 9 //循环将rest中的每个字符轮流当成已排列好的字符 10 for (int i = 0; i < rest.lenth(); i++) { 11 string next = soFar + rest[i]; //next表示下次递归的soFar字符串 12 string remain = rest.substr(0, i) + rest.substr(i + 1); //remain表示除去i本身后剩余的字符串,表示下次递归没有排列的字符串 13 RecPermute(next, remain); 14 } 15 } 16 } 17 //调用函数,空字符串“”为已排列好的字符串,s为待排列的字符串 18 void ListPermutations(String s) 19 { 20 RecPermute("", s); 21 } 22 //如果输入内容重复的字符串,会出现重复,有两种方法可以解决:1.输出到set中排除相同字母的组合;2.在生成remain时跳过重复的元素
#子集Subsets
1 //求子集,思路为找出字符串包含第一个字符的所有子集,和不包含第一个字符的所有子集,递归 2 //至rest为空即为所有子集。类似于在N个数中找出K个数。 3 void recSubsets(string soFar, string rest) 4 { 5 if (rest == "") //rest为空为结束条件 6 cout << soFar << endl; 7 else { //包含第一个字符的所有子集 8 recSubsets(soFar + rest[0], rest.substr(1)); 9 recSubsets(soFar, rest.substr(1)); //不包含第一个元素的所有子集 10 } 11 } 12 void ListSubsets(string str) //封装 13 { 14 recSubsets("", str) 15 }
#递归回溯Recursive backtracking
#Backtracking pseudocode
//伪代码 bool Solve(configuration conf) { if (no more choices) //BASE CASE return (conf is goal state); for (all available choices) { try one choice c; //solve from here, if works out, you are done if (Solve(conf with choice c made)) return true; umake choice c; } return false; //tried all choices, no soln found }
#Permute->anagram finder
1 //在字典lex中找出是否存在字符串rest任一种排列的存在 2 bool isAnagram(string sofar, string rest, Lextion &lex) 3 { 4 if (rest == "") { 5 return lex.containsWord(soFar); //rest为空,返回字典是否包含soFar 6 } else { //在字典中进行rest的全排列查找 7 for (int i = 0; i < rest.length(); i++) { 8 if (isAnagram(soFar + rest.[i], 9 rest.substr(0, i) + rest.substr(1), lex) { 10 return true; //如果找到,则递归调用全部返回true 11 } 12 } 13 } 14 return false; //所有可能性都找不到,则返回failse 15 }
#8 Queens
1 //Place N queens on the board without no theatened 2 //N * N的网格中放入N个皇后,且互相没有威胁。(皇后行、列、斜线可以任意行动) 3 //以列为基础,尝试所有行的可能性 4 bool Solve(Grid<bool> &board, int col) 5 { 6 if (col >= board.numCols()) //递归至列大于网格的列数,则表明所有皇后都完成 7 return true; 8 else { //在每一列的所有行尝试放下皇后 9 for (int rowToTry; rowToTry < board.numRows(); rowToTry++) { 10 placeQueen(board, rowToTry, col); //假设没威胁则放下皇后 11 if (Slove(board, col + 1)) //继续下一列继续递归 12 return true; 13 removeQueens(board, rowToTry, col); //如果下一列无法放置,则回溯 14 } 15 } 16 return failse; //进行至此说明所有可能性都不满足,返回false 17 }
#数独Sudoku
//Arrange 1 to 9 with no repeat in row, col, or block bool solveSudoku(Grid<int> &grid) { //按顺序查找空位,如果找不到空位,说明已经全部填满,返回true if (!findUnassignedLocation(grid, row, col)) return true; else { //在找到的空位中尝试放入1——9 for (int num = 1; num <= 9; num++) { if (noConflicts(grid, row, col, num)) { grid(row, col) = num; if (solveSudoku(grid)) //如果可以放置,则继续递归 return true; grid(row, col) = UNASSIGNED; //如果不能放置,则回溯 } } } return failse; //进行至此则说明失败 }
#Cryptarithmetic
1 //Dumb solve 2 bool dumbSolve(Pazzle pazzle, string lettersToAssign) 3 { 4 if (lettersToAssigned == "") 5 rerurn pazzleSolved(pazzle); 6 else { 7 for (int num = 0; num <= 9; num++) { 8 if (assigned(lettersToAssign, num)) { 9 if (dumbSolve(pazzle, lettersToAssign.substr(1))) 10 return true; 11 unAssigenLetter(lettersToAssign, num); 12 } 13 } 14 } 15 return failse; 16 }
原文:http://www.cnblogs.com/sdwvskyo/p/3994526.html