首页 > 其他 > 详细

计算磁感应强度的三类方法

时间:2022-05-27 20:22:18      阅读:16      评论:0      收藏:0      [点我收藏+]

洛伦兹力公式法

\[\vec{F} = q\vec{v} \times \vec{B} \]

通过已知的洛伦兹力公式,对两侧取模得到:
\(F = qvB\sin{\theta}\), \(\theta = <\vec{v}, \vec{B}>\)
因此:

\[B = \frac{F}{qv\sin{\theta}} \]

Biot-Sacart 定律

对于静磁场:

\[d\vec{B} = \frac{\mu _0}{4\pi} \frac{Id\vec{l} \times \vec{e_r}}{r^2} \]

对于运动电荷:

\[d\vec{B} = \frac{\mu _0}{4\pi} \frac{qd\vec{v} \times \vec{e_r}}{r^2} \]

安培环路定理

\[\int _{\Gamma} \vec{B} \cdot d\vec{l} = \mu _{r}\mu _{0}\sum_{i=1}^{n} I_i \]

该定理的引入使得对于磁场的计算不在依赖于实验数据的测量,也无需对各段复杂电流元的分析,而是宏观的累加通过曲线\(\Gamma\)包围区域内穿过的电流数目。尤其对于对称性磁场分布,该公式可退化为初等数学公式。

计算磁感应强度的三类方法

原文:https://www.cnblogs.com/eric2i/p/15358902.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!