1 0101111 10 100000001
1111000 001000010
题意:给出一些灯的初始状态(用0、1表示),对这些灯进行m次变换;若当前灯的前一盏灯的状态为1,则调整当前灯的状态,0变为1,1变为0;否则不变。第1盏灯的前一盏灯是最后一盏灯。问最后每盏灯的状态。
分析:通过模拟可以发现,假设有n盏灯,第i盏灯的状态为f[i],则f[i] = (f[i] + f[i-1])%2;又因为这些灯形成了环,则f[i] = (f[i] + f[(n+i-2)%n+1])%2. 这样初始状态形成一个1*n的矩阵,然后构造出如下n*n的矩阵:
1 1 0…… 0 0
0 1 1…… 0 0
……………………
1 0 0…… 0 1
每次乘以这个矩阵得出的结果就是下一个状态。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 105;
char state[N];
struct Matrix {
Matrix() {}
void Init(int n) {
row = n; col = n;
memset(mat, 0, sizeof(mat));
for(int i = 0; i < n; i++)
mat[i][i] = 1;
}
void Init(int m, int n) {
row = m; col = n;
memset(mat, 0, sizeof(mat));
}
int row, col;
int mat[N][N];
const Matrix &Pow(int n);
};
const Matrix &operator *(const Matrix &A, const Matrix &B) {
Matrix res;
res.Init(A.row, B.col);
for(int i = 0; i < A.row; i++) {
for(int j = 0; j < A.col; j++) {
if(A.mat[i][j]) {
for(int k = 0; k < B.col; k++) {
if(B.mat[j][k])
res.mat[i][k] = res.mat[i][k] ^ (A.mat[i][j] & B.mat[j][k]);
}
}
}
}
return res;
}
const Matrix &Matrix::Pow(int n) {
Matrix tmp, pre;
tmp = *this;
pre.Init(this->row);
while(n) {
if(n&1) pre = tmp * pre;
tmp = tmp * tmp;
n >>= 1;
}
return pre;
}
int main() {
int m;
Matrix A, B, ans;
while(~scanf("%d", &m)) {
scanf("%s",state);
int len = strlen(state);
A.Init(1, len);
for(int i = 0; i < len; i++)
A.mat[0][i] = state[i] - '0';
B.Init(len);
for(int i = 0; i < len; i++) {
B.mat[i][i] = 1;
B.mat[i][(i+1)%len] = 1;
}
ans = A * B.Pow(m);
for(int i = 0; i < len; i++)
printf("%d", ans.mat[0][i]);
printf("\n");
}
return 0;
}
NYOJ 300 && hdu 2276 Kiki & Little Kiki 2 (矩阵快速幂)
原文:http://blog.csdn.net/lyhvoyage/article/details/39802327