首页 > 其他 > 详细

POJ1201:Intervals【差分约束】

时间:2014-10-05 14:34:28      阅读:256      评论:0      收藏:0      [点我收藏+]

题目大意:给出N个闭区间,每个区间给出一个ci值,让你找出最小的数集Z使得每个闭区间都有不少于ci个Z中的元素,求card(Z)

思路:06年集训队论文《浅析差分约束系统》有详细的解题,设Sn为[0,n]中Z中元素的个数,ai ,bi为区间的两个端点,则可列出以下不等式:

0<=Sn-S(n-1)<=1

S(bi+1)-S(ai)>=ci

然后就可以用差分约束做了,顺便提一下,如果要把0<=Sn-S(n-1)<=1这些边加进图中的话边集会非常的大,以至于一开始邻接表开50000时TLE  130000 RE 140000 WA 一直开到150000才AC

 

#include<cstdio>
#include<algorithm>
#include<queue>
#include<string.h>
#include<iostream>
#define maxn 150010
using namespace std;
int head[maxn],point[maxn],next[maxn],value[maxn],dist[maxn];
int now=0,minx=19941117,maxx=-19941117;
queue<int> q;
void add(int x,int y,int c)
{
    next[++now]=head[x];
    head[x]=now;
    point[now]=y;
    value[now]=c;
}
void spfa(int s)
{
    int u;
    bool visit[maxn]={0};
    for(int i=minx;i<=maxx;i++)dist[i]=-19941117;
    q.push(s);
    visit[s]=1;
    dist[s]=0;
    while(!q.empty())
    {
        u=q.front();
        q.pop();
        visit[u]=0;
        for(int i=head[u];i!=0;i=next[i])
        {
            int k=point[i];
            if (dist[u]+value[i]>dist[k])
            {
                dist[k]=dist[u]+value[i];
                if (visit[k]==0)
                {
                    visit[k]=1;
                    q.push(k);
                }
            }
        }
    }
}
int main()
{
    int n,a,b,c;
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
    {
        scanf("%d%d%d",&a,&b,&c);
        if (b+1>maxx)maxx=b+1;
        if (a<minx)minx=a;
        add(a,b+1,c);
    }
    for(int i=minx;i<=maxx;i++)
    {
        add(i,i+1,0);
        add(i+1,i,-1);
    }
    spfa(minx);
    printf("%d\n",dist[maxx]);
    return 0;
}

POJ1201:Intervals【差分约束】

原文:http://www.cnblogs.com/philippica/p/4007001.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!