In this problem your task is very simple.
Consider two infinite cylinders in three-dimensional space, of radii R1 and R2 respectively, located in such a way that their axes intersect and are perpendicular.
Your task is to find the volume of their intersection.
1 1
5.3333
题解及代码:
这道题的意思很简单,就是求两个垂直相交的圆柱的重合体积。推导的思想可以见:点击打开链接
根据上面的方法我们可以推出截面公式是sqrt(R*R-x*x)*sqrt(r*r-x*x),然后积分的上下限是0--r。
虽然这公式推出来了,但是积分很困难(没推出来= =!),下面的代码用的是辛普森积分法,学习了一下,挺简单的。
主要就是这个:
这个公式在数比较小的时候,误差不大,但是数比较大的时候,误差就很大了,所以计算过程中要使用二分来把区间减小,减小误差。
#include <iostream> #include <cstdio> #include <cmath> using namespace std; const double eps=1e-7; double R,r; double f(double n) { return 8*sqrt(R*R-n*n)*sqrt(r*r-n*n); } double simpson(double a,double b) { return (b-a)/6.0*(f(a)+4*f((a+b)/2.0)+f(b)); } double cal(double a,double b) { double sum=simpson(a,b),mid=(a+b)/2.0; double t=simpson(a,mid)+simpson(mid,b); if(fabs(t-sum)<eps) return sum; return cal(a,mid)+cal(mid,b); } int main() { scanf("%lf%lf",&R,&r); if(R<r) swap(R,r); printf("%.5lf\n",cal(0,r)); return 0; }
原文:http://blog.csdn.net/knight_kaka/article/details/39804529