题目:钱数拼凑,面值为1,5,10,25,求组成n面值的最大钱币数。
分析:dp,01背包。需要进行二进制拆分,否则TLE,利用数组记录每种硬币的个数,方便更新。
写了一个 多重背包的 O(NV)反而没有拆分快。囧,最后利用了状态压缩优化 90ms;
把 1 cents 的最后处理,其他都除以5,状态就少了5倍了。
说明:貌似我的比大黄的快。(2011-09-26 12:49)。
#include <stdio.h> #include <stdlib.h> #include <string.h> #define INF -100001 #define min( a, b ) ((a)<(b)?(a):(b)) int t[ 5 ]; int F[ 2001 ][ 5 ]; int C[ 5 ] = {0,1,1,2,5}; int T[ 5 ][ 15 ]; int main() { int P,Q; while ( scanf("%d",&P) != EOF ) { for ( int i = 1 ; i <= 4 ; ++ i ) scanf("%d",&t[ i ]); if ( !P ) break; Q = P%5; P = P/5; if ( t[ 1 ] < Q ) { printf("Charlie cannot buy coffee.\n"); continue; }t[ 1 ] -= Q;t[ 1 ] /= 5; memset( F, 0, sizeof( F ) ); for ( int i = 1 ; i <= P ; ++ i ) F[ i ][ 0 ] = INF; F[ 0 ][ 0 ] = F[ 0 ][ 1 ] = Q; //二进制拆分 for ( int i = 2 ; i <= 4 ; ++ i ) { int base = 1,numb = 0; while ( t[ i ] >= base ) { T[ i ][ ++ numb ] = base; t[ i ] -= base; base <<= 1; } if ( t[ i ] ) T[ i ][ ++ numb ] = t[ i ]; T[ i ][ 0 ] = numb; } for ( int i = 2 ; i <= 4 ; ++ i ) { int e = T[ i ][ 0 ]; for ( int j = 1 ; j <= e ; ++ j ) { int v = T[ i ][ j ]; int u = v*C[ i ]; for ( int k = P ; k >= u ; -- k ) if ( F[ k-u ][ 0 ] >= 0 && F[ k ][ 0 ] < F[ k-u ][ 0 ]+v ) { for ( int l = 0 ; l <= 4 ; ++ l ) F[ k ][ l ] = F[ k-u ][ l ]; F[ k ][ 0 ] += v; F[ k ][ i ] += v; } } } //处理 cents 的 for ( int i = t[ 1 ] ; i >= 0 ; -- i ) if ( F[ P-i ][ 0 ] >= 0 ) { int s = t[ 1 ]; F[ P-i ][ 0 ] += i*5; F[ P-i ][ 1 ] += i*5; s -= i; for ( int j = 4 ; j > 1 ; -- j ) { int v = min( s/C[ j ], F[ P-i ][ j ] ); F[ P-i ][ j ] -= v; F[ P-i ][ 1 ] += v*C[ j ]; F[ P-i ][ 0 ] += v*(C[ j ]-1); s -= v*C[ j ]; } } int max = INF,spa = P; for ( int i = 0 ; i <= t[ 1 ] ; ++ i ) if ( max < F[ P-i ][ 0 ] ) { max = F[ P-i ][ 0 ]; spa = P-i; } if ( F[ spa ][ 0 ] <= 0 ) printf("Charlie cannot buy coffee.\n"); else printf("Throw in %d cents, %d nickels, %d dimes, and %d quarters.\n", F[ spa ][ 1 ],F[ spa ][ 2 ],F[ spa ][ 3 ],F[ spa ][ 4 ]); } return 0; }
原文:http://blog.csdn.net/mobius_strip/article/details/39972657