首页 > 其他 > 详细

4545545

时间:2014-10-11 13:02:16      阅读:191      评论:0      收藏:0      [点我收藏+]

(1)$\sum\limits_{n = 1}^\infty  {\left( {\frac{1}{{\sqrt n }} - \sqrt {\ln \left( {1 + \frac{1}{n}} \right)} } \right)}$

1

(2)${\sum\limits_{n = 1}^\infty  {\left( {\frac{1}{n} - \sin \frac{1}{n}} \right)} ^\alpha }\left( {\alpha  > 0} \right)$

1

(3)$\sum\limits_{n = 1}^\infty  {\frac{{{p^n}n!}}{{{n^n}}}} \left( {p > 0} \right)$

1

(4)$\sum\limits_{n = 1}^\infty  {\frac{1}{{{3^{\sqrt n }}}}} $

1

(5)$\sum\limits_{n = 1}^\infty  {\frac{1}{{\ln \left( {n + 1} \right)}}\sin \frac{1}{n}} $

1

(6)${\sum\limits_{n = 1}^\infty  {\left( {\sqrt[n]{n} - 1} \right)} ^p}\left( {p > 0} \right)$

1

(7)$\sum\limits_{n = 1}^\infty  {\frac{{{a^n}}}{{1 + {a^{2n}}}}} \left( {a > 0} \right)$

1

(8)$\sum\limits_{n = 1}^\infty  {\frac{{\ln \left( {n + 2} \right)}}{{{{\left( {a + \frac{1}{n}} \right)}^n}}}} \left( {a > 0} \right)$

1

(9)

4545545

原文:http://www.cnblogs.com/ly758241/p/4018732.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!