首页 > 其他 > 详细

Unique Binary Search Trees II

时间:2014-10-13 22:44:08      阅读:282      评论:0      收藏:0      [点我收藏+]

这题首先要明白的是,二叉搜索树的左子树和右子树都自成二叉搜索树。这种递归定义决定了,如果我知道从1到n - 1时,所有的二叉搜索树结构,那结点数为n的二叉搜索树也可以得到了。

转换关系是这样的:

对于一个含有n个结点的二叉搜索树,首先树根可以从i = 1~n变化,然后左右子树的结点数目分别是i - 1和  n- i。

这样分析下来,动态规划的思路就比较明显了。这题麻烦点的是对于一颗树的复制.

TreeNode *copyTree(TreeNode *root, int offSet){
	if (root == nullptr)
		return nullptr;
	TreeNode *nRoot = new TreeNode(root->val + offSet);
	nRoot->left = copyTree(root->left, offSet);
	nRoot->right = copyTree(root->right, offSet);
	return nRoot;
}
    vector<TreeNode *> generateTrees(int n) {
	vector<TreeNode *> result;
	if (n == 0){
		result.push_back(nullptr);
		return result;
	}
	vector<vector<TreeNode*> > table(n + 1);
	TreeNode *t1 = new TreeNode(1);
	table[0] = {nullptr};
	table[1] = {t1};
	for (int i = 2; i < n + 1; i++){
		vector<TreeNode*> row;
		for (int j = 1; j < i + 1; j++){
			//vector<TreeNode*> lt = table[j - 1];//left: no offset
			//vector<TreeNode*> rt = table[i - j];//right: offset by j
			for (auto lIt = table[j - 1].begin();
				lIt != table[j - 1].end(); lIt++){
				for (auto rIt = table[i - j].begin(); rIt != table[i - j].end();
					      rIt++){
					TreeNode *midNode = new TreeNode(j);
					midNode->left = copyTree(*lIt, 0);
					midNode->right = copyTree(*rIt, j);
					row.push_back(midNode);
				}
			}
		}
		table[i] = row;
	}
	return table[n];
    }

  

Unique Binary Search Trees II

原文:http://www.cnblogs.com/hustxujinkang/p/4023166.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!