DP: dp[i][j]前i堆排出j长度的序列有多少种排法,
dp[i][j]=dp[i-1][j] (不用第i堆),
dp[i][j]+=dp[i-1][j-k]*C[j][k] (用第i堆的k个石头)
3 1 1 1 2 1 2
Case 1: 15 Case 2: 8HintIn the first case, suppose the colors of the stones Mr. B has are B, G and M, the different patterns Mr. B can form are: B; G; M; BG; BM; GM; GB; MB; MG; BGM; BMG; GBM; GMB; MBG; MGB.
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long int LL;
const LL MOD = 1000000007LL;
LL C[11000][210];
void getC()
{
for(int i=0;i<11000;i++) C[i][0]=C[i][i]=1;
for(int i=2;i<11000;i++)
for(int j=1;j<i&&j<=200;j++)
C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
}
LL dp[110][11000];
int n,a[110];
int main()
{
getC();
int cas=1;
while(scanf("%d",&n)!=EOF)
{
for(int i=1;i<=n;i++)
scanf("%d",a+i);
memset(dp,0,sizeof(dp));
int len=0;
dp[0][0]=1;
for(int i=1;i<=n;i++)
{
len+=a[i];
for(int j=0;j<=len;j++)
{
dp[i][j]=(dp[i][j]+dp[i-1][j])%MOD;
for(int k=1;k<=a[i]&&j-k>=0;k++)
{
dp[i][j]=(dp[i][j]+dp[i-1][j-k]*C[j][k])%MOD;
}
}
}
LL ans=0;
for(int i=1;i<=len;i++)
ans=(ans+dp[n][i])%MOD;
printf("Case %d: %lld\n",cas++,ans%MOD);
}
return 0;
}
HDOJ 4248 A Famous Stone Collector DP
原文:http://blog.csdn.net/ck_boss/article/details/40209735