首页 > 其他 > 详细

Implement Insert and Delete of Tri-nay Tree

时间:2014-10-19 02:39:17      阅读:695      评论:0      收藏:0      [点我收藏+]

问题

Implement insert and delete in a tri-nary tree. A tri-nary tree is much like a binary tree but with three child nodes for each parent instead of two -- with the left node being values less than the parent, the right node values greater than the parent, and the middle nodes values equal to the parent.

For example, suppose I added the following nodes to the tree in this order: 5, 4, 9, 5, 7, 2, 2. The resulting tree would look like this:

bubuko.com,布布扣

  1 /* 
  2  * Author: Min Li
  3  * This code can implement insert and delete in a tri-nary tree.
  4  */
  5 
  6 #include<iostream>
  7 
  8 using namespace std;
  9 
 10 
 11 // Definition for Tree Node
 12 struct TreeNode {
 13 public:
 14         int val;
 15         TreeNode *left;
 16         TreeNode *right;
 17         TreeNode *middle;
 18         TreeNode(int x) : val(x), left(NULL), right(NULL), middle(NULL) {}
 19 };
 20 
 21 
 22 // Class: trinaryTree
 23 class trinaryTree {
 24 public:
 25     TreeNode* insert(TreeNode *root, int value);        // Insert a node
 26     TreeNode* deleteNode(TreeNode *root, int value);    // Delete a node
 27     TreeNode* findSuccessor(TreeNode *root);            // Find a node‘s successor
 28     bool test();                                        // Test my code
 29 };
 30 
 31 
 32 // Method: Insert a node into tri-nary tree
 33 // return the root of new tri-nary tree
 34 TreeNode* trinaryTree:: insert(TreeNode *root, int value) {
 35     TreeNode *Node = new TreeNode(value);
 36     if(root==NULL)                    // tree is empty
 37       root = Node;
 38     else {
 39       TreeNode *parent;
 40       TreeNode *tmpNode = root;
 41       // Find the parent of "Node"
 42       while(tmpNode!=NULL) { 
 43         parent = tmpNode;
 44         if(tmpNode->val < Node->val)        // Node is in the right subtree
 45           tmpNode = tmpNode->right;
 46         else if(tmpNode->val > Node->val)    // Node is in the left subtree
 47           tmpNode = tmpNode->left;
 48         else                                // Node is in the middle subtree
 49           tmpNode = tmpNode->middle;
 50       }
 51       // Insert the Node under parent
 52       if(Node->val == parent->val)
 53         parent->middle = Node;
 54       else if(Node->val > parent->val)
 55         parent->right = Node;
 56       else
 57         parent->left = Node;
 58     }
 59     return root;
 60 }
 61 
 62 // Method: Delete a node from tri-nary tree
 63 // Return the root of new tree
 64 TreeNode* trinaryTree:: deleteNode(TreeNode *root, int value) {
 65         
 66     if(root==NULL)
 67       return NULL;
 68     if(root->val == value) {
 69         if(root->left==NULL && root->middle==NULL && root->right==NULL) { // Delete a leaf
 70             delete root;
 71             return NULL;
 72         }
 73         if(root->middle!=NULL) {            // Middle child is not empty 
 74             root->middle = deleteNode(root->middle,value);
 75         }
 76         else {
 77             if(root->left==NULL) {            // Left child is empty, but right child is not
 78                 TreeNode* rightChild = root->right;
 79                 delete root;
 80                 return rightChild;
 81                 
 82             }
 83             else if(root->right==NULL) {    // Right child is empty, but left child is not
 84                 TreeNode* leftChild = root->left;
 85                 delete root;
 86                 return leftChild;
 87             }
 88             else {    // Both left and right child exists
 89                 TreeNode *successor = findSuccessor(root->right);
 90                 root->val = successor->val;
 91                 root->right = deleteNode(root->right,successor->val);
 92             }
 93         }
 94     }
 95     else if(root->val > value)  // Recursive left subtree
 96       root->left = deleteNode(root->left,value);
 97     else                        // Recursive right subtree
 98       root->right = deleteNode(root->right,value);
 99 
100     return root;
101 }
102 
103 // Method: Find the successor
104 TreeNode* trinaryTree:: findSuccessor(TreeNode *root) {
105     if(root->left==NULL)
106       return root;
107     else
108       return findSuccessor(root->left);
109 }
110 
111 
112 // Method: Test
113 bool trinaryTree:: test() {
114     trinaryTree test;
115     TreeNode *root = NULL;
116     TreeNode *node;
117     
118     // Test tree insert
119     int val[] = {5,4,9,5,7,2,2};
120     int i;
121     for(i=0;i<sizeof(val)/sizeof(int);i++) {
122         root = test.insert(root,val[i]);
123 
124     }
125     
126     // Test tree delete
127     // Case1: delete a leaf
128     test.deleteNode(root,5);
129     // Case2: delete root
130     test.deleteNode(root,5);
131     // Case3: delete a node with only left child
132     test.deleteNode(root,4);
133     
134     return true;
135 
136 
137 }

 

Implement Insert and Delete of Tri-nay Tree

原文:http://www.cnblogs.com/sdytlm/p/4034163.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!