计算几何: 最基本的计算几何,差积 旋转
Time Limit: 3000MS | Memory Limit: Unknown | 64bit IO Format: %lld & %llu |
Description
Problem D
Morley’s Theorem
Input: Standard Input
Output: Standard Output
Morley’s theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below the tri-sectors of angles A, B and C has intersected and created an equilateral triangle DEF.
Of course the theorem has various generalizations, in particular if all of the tri-sectors are intersected one obtains four other equilateral triangles. But in the original theorem only tri-sectors nearest to BC are allowed to intersect to get point D, tri-sectors nearest to CA are allowed to intersect point E and tri-sectors nearest to AB are intersected to get point F. Trisectorlike BD and CE are not allowed to intersect. So ultimately we get only one equilateral triangle DEF. Now your task is to find the Cartesian coordinates of D, E and F given the coordinates of A, B, and C.
First line of the input file contains an integer N (0<N<5001) which denotes the number of test cases to follow. Each of the next lines contain six integers . This six integers actually indicates that the Cartesian coordinates of point A, B and C are respectively. You can assume that the area of triangle ABC is not equal to zero, and the points A, B and C are in counter clockwise order.
2 1 1 2 2 1 2 0 0 100 0 50 50 |
1.316987 1.816987 1.183013 1.683013 1.366025 1.633975 56.698730 25.000000 43.301270 25.000000 50.000000 13.397460 |
Problemsetters: Shahriar Manzoor
Special Thanks: Joachim Wulff
Source
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; const double eps=1e-8; int dcmp(double x) { if(fabs(x)<eps) return 0; else return (x<0)?-1:1; } struct Point { double x,y; Point(double _x=0,double _y=0):x(_x),y(_y){} }; Point operator+(Point A,Point B) {return Point(A.x+B.x,A.y+B.y);} Point operator-(Point A,Point B) {return Point(A.x-B.x,A.y-B.y);} Point operator*(Point A,double p) {return Point(A.x*p,A.y*p);} Point operator/(Point A,double p) {return Point(A.x/p,A.y/p);} Point A,B,C; double Dot(Point A,Point B) {return A.x*B.x+A.y*B.y;} double Length(Point A) {return sqrt(Dot(A,A));} double Angle(Point A,Point B) {return acos(Dot(A,B)/Length(A)/Length(B));} double angle(Point v) {return atan2(v.y,v.x);} double Cross(Point A,Point B) {return A.x*B.y-A.y*B.x;} Point Rotate(Point A,double rad) { return Point(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad)); } Point GetLineIntersection(Point p,Point v,Point q,Point w) { Point u=p-q; double t=Cross(w,u)/Cross(v,w); return p+v*t; } Point getD(Point A,Point B,Point C) { Point v1=C-B; double a1=Angle(A-B,v1); v1=Rotate(v1,a1/3); Point v2=B-C; double a2=Angle(A-C,v2); v2=Rotate(v2,-a2/3); return GetLineIntersection(B,v1,C,v2); } int main() { int T_T; scanf("%d",&T_T); while(T_T--) { for(int i=0;i<3;i++) { double x,y; scanf("%lf%lf",&x,&y); if(i==0) A=(Point){x,y}; else if(i==1) B=(Point){x,y}; else if(i==2) C=(Point){x,y}; } Point D=getD(A,B,C); Point E=getD(B,C,A); Point F=getD(C,A,B); printf("%.6lf %.6lf %.6lf %.6lf %.6lf %.6lf\n",D.x,D.y,E.x,E.y,F.x,F.y); } return 0; }
UVA 11178 Morley's Theorem 计算几何
原文:http://blog.csdn.net/ck_boss/article/details/40320671