Language:
Prime Path
Description
The ministers of the cabinet were quite upset by the message from the Chief of Security stating that they would all have to change the four-digit room numbers on their offices.
— It is a matter of security to change such things every now and then, to keep the enemy in the dark. — But look, I have chosen my number 1033 for good reasons. I am the Prime minister, you know! — I know, so therefore your new number 8179 is also a prime. You will just have to paste four new digits over the four old ones on your office door. — No, it’s not that simple. Suppose that I change the first digit to an 8, then the number will read 8033 which is not a prime! — I see, being the prime minister you cannot stand having a non-prime number on your door even for a few seconds. — Correct! So I must invent a scheme for going from 1033 to 8179 by a path of prime numbers where only one digit is changed from one prime to the next prime. Now, the minister of finance, who had been eavesdropping, intervened. — No unnecessary expenditure, please! I happen to know that the price of a digit is one pound. — Hmm, in that case I need a computer program to minimize the cost. You don‘t know some very cheap software gurus, do you? — In fact, I do. You see, there is this programming contest going on... Help the prime minister to find the cheapest prime path between any two given four-digit primes! The first digit must be nonzero, of course. Here is a solution in the case above. 1033The cost of this solution is 6 pounds. Note that the digit 1 which got pasted over in step 2 can not be reused in the last step – a new 1 must be purchased. Input
One line with a positive number: the number of test cases (at most 100). Then for each test case, one line with two numbers separated by a blank. Both numbers are four-digit primes (without leading zeros).
Output
One line for each case, either with a number stating the minimal cost or containing the word Impossible.
Sample Input 3 1033 8179 1373 8017 1033 1033 Sample Output 6 7 0 Source |
题意:
思路:bfs,搜索求最短路径,很容易就想到广度优先搜索;因为广度优先搜索,第一次搜到得到的步数就是最少的步数。另外打素数表提高判断的时候的效率。
代码:
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <string> #include <map> #include <stack> #include <vector> #include <set> #include <queue> #pragma comment (linker,"/STACK:102400000,102400000") #define maxn 10005 #define MAXN 2005 #define mod 1000000009 #define INF 0x3f3f3f3f #define pi acos(-1.0) #define eps 1e-6 typedef long long ll; using namespace std; bool ISprime[maxn]; bool visit[maxn]; int m,n,a,b,c,d; struct Node { int p[4];//用数组存各位数 int step; }; void prime() //素数筛法 { for (int i=2;i<maxn;i++) { if (i%2) ISprime[i]=true; else ISprime[i]=false; } int m=sqrt(10010.0); for (int i=3;i<m;i++) { if (ISprime[i]) { for (int j=i+i;j<maxn;j+=i) ISprime[j]=false; } } } int bfs() { Node st,now; memset(visit,false,sizeof(visit)); queue<Node>Q; while (!Q.empty()) Q.pop(); visit[m]=true; st.p[0]=m/1000;st.p[1]=(m/100)%10;st.p[2]=(m/10)%10;st.p[3]=m%10; // printf("%d %d %d %d\n",st.a[0],st.a[1],st.a[2],st.a[3]); st.step=0; Q.push(st); while (!Q.empty()) { st=Q.front(); Q.pop(); if (st.p[0]==a&& st.p[1]==b&&st.p[2]==c&&st.p[3]==d) { return st.step; } for (int i=0;i<=3;i++) { for (int j=0;j<10;j++) { if (st.p[i]==j) continue; if (i==0&&j==0) continue; now.p[0]=st.p[0]; now.p[1]=st.p[1]; now.p[2]=st.p[2]; now.p[3]=st.p[3]; now.p[i]=j; int x=now.p[0]*1000+now.p[1]*100+now.p[2]*10+now.p[3]; if (ISprime[x]&&!visit[x]) { visit[x]=true; now.step=st.step+1; Q.push(now); } } } } return -1; } int main() { prime(); int cas; scanf("%d",&cas); while (cas--) { scanf("%d%d",&m,&n); a=n/1000;b=(n/100)%10;c=(n/10)%10;d=n%10; // printf("%d %d %d %d\n",a,b,c,d); int ans=bfs(); if (ans==-1) printf("Impossible\n"); else printf("%d\n",ans); } return 0; } /* 3 1033 8179 1373 8017 1033 1033 */
原文:http://blog.csdn.net/u014422052/article/details/40349285