This time, you are supposed to find A*B where A and B are two polynomials.
Input Specification:
Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial: K N1 aN1 N2 aN2 ... NK aNK, where K is the number of nonzero terms in the polynomial, Ni and aNi (i=1, 2, ..., K) are the exponents and coefficients, respectively. It is given that 1 <= K <= 10, 0 <= NK < ... < N2 < N1 <=1000.
Output Specification:
For each test case you should output the product of A and B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate up to 1 decimal place.
Sample Input2 1 2.4 0 3.2 2 2 1.5 1 0.5Sample Output
3 3 3.6 2 6.0 1 1.6
题意:给出了两个多项式的系数和幂次数,求这两个多项式相乘后的系数和幂次数。
思路:直接模拟相乘就可以了,但是要注意一点就是,幂次数相同的需要合并,系数为0需要去掉。因此我选择用map
#include<iostream> #include<iomanip> #include<map> #include<iterator> using namespace std; class Node { public: int x; double y; }; map<int,double> node; Node node1[110],node2[110]; int main() { int n,m; int i,j,k; cin>>n; for(i=0;i<n;i++) cin>>node1[i].x>>node1[i].y; cin>>m; for(i=0;i<m;i++) cin>>node2[i].x>>node2[i].y; for(i=0;i<n;i++) { for(j=0;j<m;j++) { int r=node1[i].x+node2[j].x; double t=node1[i].y*node2[j].y; if(node.count(r)) { t=t+node[r]; if(t==0) node.erase(r); else node[r]=t; } else { node.insert(make_pair(r,t)); } } } cout<<node.size(); map<int,double>::reverse_iterator it; for(it=node.rbegin();it!=node.rend();++it) { cout<<" "<<it->first<<" "; cout<<fixed<<setprecision(1)<<it->second; } return 0; }
[map]PAT1009 Product of Polynomials
原文:http://blog.csdn.net/zju_ziqin/article/details/19688163