首页 > 其他 > 详细

libsvm代码阅读:关于Solver类分析(一)

时间:2014-02-23 12:31:49      阅读:501      评论:0      收藏:0      [点我收藏+]

现在我们涉及到的Solver类是一个SVM优化求解的实现技术:SMO,即序贯最小优化算法。libsvm中最原始的Solver的代码有六百多行,再加上各种变形就上千行了,为了好理解,我们先来看看理论问题。

代码的开头如下:

// An SMO algorithm in Fan et al., JMLR 6(2005), p. 1889--1918
// Solves:
//
//	min 0.5(\alpha^T Q \alpha) + p^T \alpha
//
//		y^T \alpha = \delta
//		y_i = +1 or -1
//		0 <= alpha_i <= Cp for y_i = 1
//		0 <= alpha_i <= Cn for y_i = -1
//
// Given:
//
//	Q, p, y, Cp, Cn, and an initial feasible point \alpha
//	l is the size of vectors and matrices
//	eps is the stopping tolerance
//
// solution will be put in \alpha, objective value will be put in obj
//
即代码的实现主要参考文献:

Fan R E, Chen P H, Lin C J. Working set selection using second order information for training support vector machines[J]. The Journal of Machine Learning Research, 2005, 6: 1889-1918.
那么,我们就来读读这篇文章:

SVM的优化问题如下:

bubuko.com,布布扣

核心目标是:求出最优解alpha*。

bubuko.com,布布扣

分解算法只更新拉格朗日乘子alpha_i的一个固定大小的子集,其他保持不变。因此,每当更新一个新点加入到工作集,另一个点要被移除。在这个算法中,目标是每次在数据的一个小的子集上优化全局问题。

而SMO算法是将分解算法思想推向极致得出的,即每次迭代仅优化两个点的最小子集。

bubuko.com,布布扣

算法的流程如上所示。但是,如何find a two-element working set B,上面的算并没有讲。下面我们直接贴出本篇论文的Select_B 方法:

bubuko.com,布布扣

bubuko.com,布布扣

bubuko.com,布布扣

上面的算法的流程还是相对清晰的。下面,我们来看看SMO的伪代码(Algorithm 2)

Inputs:
	y: array of {+1, -1}: class of the i-th instance
	Q: Q[i][j] = y[i]*y[j]*K[i][j]; K: kernel matrix
	len: number of instances
	
//parameters
eps = 1e-3 // stopping tolerance
tau = 1e-12

//main routine
initialize alpha array A to all zero
initialize gradient array G to all -1

while(1)
{
	(i,j) = selectB()
	if (j == -1)
		break

	//working set is (i,j)
	a = Q[i][i]+Q[j][j]-2*y[i]y[j]*Q[i][j]
	if (a <= 0)
		a = tau
	b = -y[i]*G[i]+y[j]*G[j]
	
	//update alpha 
	oldAi = A[i], oldAj = A[j]
	A[i] += y[i]*b/a
	A[j] -= y[j]*b/a
	
	//project alpha back to the feasible region 
	sum = y[i]*oldAi + y[j]*oldAj
	if A[i] > C
		A[i] = C
	if A[i] < 0
		A[i] = 0
	A[j] = y[j]*(sum - y[i]*A[i])
	
	if A[j] > C
		A[j] = C
	if A[j] < 0
		A[j] = 0
	A[i] = y[i]*(sum - y[j]*A[j])
	
	//update gradient
	deltaAi = A[i] - oldAi,   deltaAj = A[j] - oldAj
	for t = 1 to len
		G[t] += Q[t][i]*deltaAi + Q[t][j]*deltaAj
}

procedure selectB
	//select i
	i = -1
	G_max = -inf
	G_min = inf
	for t = 1 to len
		if(y[t]==+1 and A[t] < C) or (y[t]==-1 and A[t] >0)
			{
				if(-y[t]*G[t] >= G_max)
					{
						i = t
						G_max = -y[t]*G[t]
					}
			}
			
	//select j
	j = -1
	obj_min = inf
	for t = 1 to len
	{
		if(y[t]==+1 and A[t] >0)or(y[t]==-1 and A[t] < C)
		{
			b = G_max + y[t]*G[t]
			if (-y[t]*G[t] <= G_min)
				G_min = -y[t]*G[t]
			if (b > 0)
			{
					a = Q[i][i]+Q[t][t]-2*y[i]*y[t]*Q[i][t]
					if (a <= 0)
						a = tau
					if (-(b*b)/a <= obj_min)
					{
						j = t
						obj_min = -(b*b)/a
					}
			}
		}
	}
	
	if (G_max-G_min < eps)
		return (-1,-1)
	
	return (i,j)
end procedure


libsvm代码阅读:关于Solver类分析(一)

原文:http://blog.csdn.net/linj_m/article/details/19698463

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!