抽象接口类, 关键get和put都有两个版本
序列化, putBytes, getBytes
非序列化, putValues,
getValues
其中putValues的返回值为PutResult, 其中的data可能是Iterator或ByteBuffer
private[spark] case class PutResult(size: Long, data: Either[Iterator[_], ByteBuffer])
/** * Abstract class to store blocks */ private[spark] abstract class BlockStore(val blockManager: BlockManager) extends Logging { def putBytes(blockId: String, bytes: ByteBuffer, level: StorageLevel) /** * Put in a block and, possibly, also return its content as either bytes or another Iterator. * This is used to efficiently write the values to multiple locations (e.g. for replication). * * @return a PutResult that contains the size of the data, as well as the values put if * returnValues is true (if not, the result‘s data field can be null) */ def putValues(blockId: String, values: ArrayBuffer[Any], level: StorageLevel, returnValues: Boolean) : PutResult /** * Return the size of a block in bytes. */ def getSize(blockId: String): Long def getBytes(blockId: String): Option[ByteBuffer] def getValues(blockId: String): Option[Iterator[Any]] /** * Remove a block, if it exists. * @param blockId the block to remove. * @return True if the block was found and removed, False otherwise. */ def remove(blockId: String): Boolean def contains(blockId: String): Boolean def clear() { } }
对应DiskStore其实很单纯, 就是打开相应的文件读或写.
/** * Stores BlockManager blocks on disk. */ private class DiskStore(blockManager: BlockManager, rootDirs: String) extends BlockStore(blockManager) with Logging {
override def putBytes(blockId: String, _bytes: ByteBuffer, level: StorageLevel) { // So that we do not modify the input offsets ! // duplicate does not copy buffer, so inexpensive val bytes = _bytes.duplicate() val file = createFile(blockId) val channel = new RandomAccessFile(file, "rw").getChannel() while (bytes.remaining > 0) { channel.write(bytes) } channel.close() }
override def putValues( blockId: String, values: ArrayBuffer[Any], level: StorageLevel, returnValues: Boolean) : PutResult = { val file = createFile(blockId) val fileOut = blockManager.wrapForCompression(blockId, new FastBufferedOutputStream(new FileOutputStream(file))) val objOut = blockManager.defaultSerializer.newInstance().serializeStream(fileOut) objOut.writeAll(values.iterator) objOut.close() val length = file.length() if (returnValues) { // Return a byte buffer for the contents of the file val buffer = getFileBytes(file) PutResult(length, Right(buffer)) } else { PutResult(length, null) } } override def getBytes(blockId: String): Option[ByteBuffer] = { val file = getFile(blockId) val bytes = getFileBytes(file) Some(bytes) } override def getValues(blockId: String): Option[Iterator[Any]] = { getBytes(blockId).map(bytes => blockManager.dataDeserialize(blockId, bytes)) }
}
对于MemoryStore复杂一些
首先使用LinkedHashMap, 可遍历的HashMap, 来组织MemoryStore, 其中的hashmap的结构(blockid,
entry)
使用Entry抽象来表示block内容
并且在put的时候, 还涉及到memory空间的释放, ensureFreeSpace
/** * Stores blocks in memory, either as ArrayBuffers of deserialized Java objects or as * serialized ByteBuffers. */ private class MemoryStore(blockManager: BlockManager, maxMemory: Long) extends BlockStore(blockManager) { // 使用Entry来表示block内容 case class Entry(value: Any, size: Long, deserialized: Boolean, var dropPending: Boolean = false) private val entries = new LinkedHashMap[String, Entry](32, 0.75f, true) // 使用LinkedHashMap来表示整个MemoryStore private var currentMemory = 0L // Object used to ensure that only one thread is putting blocks and if necessary, dropping // blocks from the memory store. private val putLock = new Object() // HashMap不是线程安全的, 需要锁同步 override def putBytes(blockId: String, _bytes: ByteBuffer, level: StorageLevel) { // Work on a duplicate - since the original input might be used elsewhere. val bytes = _bytes.duplicate() bytes.rewind() // 对于NIO的ByteBuffer, 使用前最好rewind if (level.deserialized) { // 如果storage level需要非序列化的 val values = blockManager.dataDeserialize(blockId, bytes) // 需要先反序列化 val elements = new ArrayBuffer[Any] elements ++= values val sizeEstimate = SizeEstimator.estimate(elements.asInstanceOf[AnyRef]) tryToPut(blockId, elements, sizeEstimate, true) } else { tryToPut(blockId, bytes, bytes.limit, false) } }
// putValues的返回值取决于storage level, 如果是deserialized, 返回iterator, 否则ByteBuffer override def putValues( blockId: String, values: ArrayBuffer[Any], level: StorageLevel, returnValues: Boolean) : PutResult = { if (level.deserialized) { val sizeEstimate = SizeEstimator.estimate(values.asInstanceOf[AnyRef]) tryToPut(blockId, values, sizeEstimate, true) PutResult(sizeEstimate, Left(values.iterator)) } else { val bytes = blockManager.dataSerialize(blockId, values.iterator) tryToPut(blockId, bytes, bytes.limit, false) PutResult(bytes.limit(), Right(bytes.duplicate())) } } override def getBytes(blockId: String): Option[ByteBuffer] = { val entry = entries.synchronized { entries.get(blockId) } if (entry == null) { None } else if (entry.deserialized) { Some(blockManager.dataSerialize(blockId, entry.value.asInstanceOf[ArrayBuffer[Any]].iterator)) } else { Some(entry.value.asInstanceOf[ByteBuffer].duplicate()) // Doesn‘t actually copy the data } } override def getValues(blockId: String): Option[Iterator[Any]] = { val entry = entries.synchronized { entries.get(blockId) } if (entry == null) { None } else if (entry.deserialized) { Some(entry.value.asInstanceOf[ArrayBuffer[Any]].iterator) } else { val buffer = entry.value.asInstanceOf[ByteBuffer].duplicate() // Doesn‘t actually copy data Some(blockManager.dataDeserialize(blockId, buffer)) } }
/** * Try to put in a set of values, if we can free up enough space. The value should either be * an ArrayBuffer if deserialized is true or a ByteBuffer otherwise. Its (possibly estimated) * size must also be passed by the caller. * * Locks on the object putLock to ensure that all the put requests and its associated block * dropping is done by only on thread at a time. Otherwise while one thread is dropping * blocks to free memory for one block, another thread may use up the freed space for * another block. */ private def tryToPut(blockId: String, value: Any, size: Long, deserialized: Boolean): Boolean = { // TODO: Its possible to optimize the locking by locking entries only when selecting blocks // to be dropped. Once the to-be-dropped blocks have been selected, and lock on entries has been // released, it must be ensured that those to-be-dropped blocks are not double counted for // freeing up more space for another block that needs to be put. Only then the actually dropping // of blocks (and writing to disk if necessary) can proceed in parallel. putLock.synchronized { if (ensureFreeSpace(blockId, size)) { // 如果可用分配足够的memory val entry = new Entry(value, size, deserialized) entries.synchronized { entries.put(blockId, entry) } currentMemory += size true } else { // 如果memory无法放下这个block, 那么只有从memory删除, 如果可以用disk, 那么在dropFromMemory中会put到disk中 // Tell the block manager that we couldn‘t put it in memory so that it can drop it to // disk if the block allows disk storage. val data = if (deserialized) { Left(value.asInstanceOf[ArrayBuffer[Any]]) } else { Right(value.asInstanceOf[ByteBuffer].duplicate()) } blockManager.dropFromMemory(blockId, data) false } } } /** * Tries to free up a given amount of space to store a particular block, but can fail and return * false if either the block is bigger than our memory or it would require replacing another * block from the same RDD (which leads to a wasteful cyclic replacement pattern for RDDs that * don‘t fit into memory that we want to avoid). * * Assumes that a lock is held by the caller to ensure only one thread is dropping blocks. * Otherwise, the freed space may fill up before the caller puts in their new value. */ private def ensureFreeSpace(blockIdToAdd: String, space: Long): Boolean = { if (space > maxMemory) { logInfo("Will not store " + blockIdToAdd + " as it is larger than our memory limit") return false } if (maxMemory - currentMemory < space) { val rddToAdd = getRddId(blockIdToAdd) val selectedBlocks = new ArrayBuffer[String]() var selectedMemory = 0L // This is synchronized to ensure that the set of entries is not changed // (because of getValue or getBytes) while traversing the iterator, as that // can lead to exceptions. entries.synchronized { val iterator = entries.entrySet().iterator() // 会依次删除现有的block, 直到可以放下新的block while (maxMemory - (currentMemory - selectedMemory) < space && iterator.hasNext) { val pair = iterator.next() val blockId = pair.getKey if (rddToAdd != null && rddToAdd == getRddId(blockId)) { logInfo("Will not store " + blockIdToAdd + " as it would require dropping another " + "block from the same RDD") return false } selectedBlocks += blockId selectedMemory += pair.getValue.size } } if (maxMemory - (currentMemory - selectedMemory) >= space) { logInfo(selectedBlocks.size + " blocks selected for dropping") for (blockId <- selectedBlocks) { // 删除selectedBlocks, 释放空间 val entry = entries.synchronized { entries.get(blockId) } // This should never be null as only one thread should be dropping // blocks and removing entries. However the check is still here for // future safety. if (entry != null) { val data = if (entry.deserialized) { Left(entry.value.asInstanceOf[ArrayBuffer[Any]]) } else { Right(entry.value.asInstanceOf[ByteBuffer].duplicate()) } blockManager.dropFromMemory(blockId, data) } } return true } else { return false } } return true }
原文:http://www.cnblogs.com/fxjwind/p/3512590.html