直方图匹配算法,又称直方图规定化。简单说,就是根据某函数、或者另外一张图片的引导,使得原图改变。
感觉解释的最好的是:http://www.360doc.com/content/13/1106/16/10724725_327179043.shtml
完整代码:github (里面同时包含OSTU / 大津算法、直方图均衡化等算法,还包括两种测试图片)。
因为我个人兴趣爱好(放P就是老师逼的。。。),不允许使用 OpenCV 封装好的直方图函数。根据实例讲解,了解了直方图匹配算法底层的操作(多说一句,这个例子可以是我见过最好的直方图匹配算法讲解,也是很难见的此算法的例子,必读)。
注:实例讲解中 0->3 的意义是,原图中灰度级为 0 的像素点全部转化为原图中的 3 灰度级。
上代码(其中,srcImg 是原图,dstImg 是需要匹配的图,flag 标记两者是 RGB 图还是灰度图):
cv::Mat ycMatchHist(cv::Mat srcImg, cv::Mat dstImg, int flag)
{
// ****** 如果是 RGB 图片则转为灰度图片操作 ******
Mat out(srcImg);
if (flag == YC_RGB)
{
cvtColor(srcImg, out, CV_BGR2GRAY);
}
else if (flag == YC_GRAY)
{
}
int grayLevel[colvl];
for(int i=0; i<colvl; i++) grayLevel[i] = i;
int grayArr[colvl];
int srcRow = srcImg.rows;
int srcCol = srcImg.cols;
int dstRow = dstImg.rows;
int dstCol = dstImg.cols;
float srcCdfArr[colvl] = {0.f};
float dstCdfArr[colvl] = {0.f};
float tmp;
// *** 求解源图片的累积直方图(概率)分布 ***
memset(grayArr, 0, sizeof(grayArr));
for(size_t nrow = 0; nrow < srcRow; nrow++)
for(size_t ncol = 0; ncol < srcCol; ncol++)
{
int tag = srcImg.at<uchar>(nrow, ncol);
grayArr[tag]++;
}
tmp = 0;
for(int i=0; i<colvl; i++)
{
tmp += grayArr[i];
srcCdfArr[i] = tmp / (srcRow * srcCol);
// std::cout<<srcCdfArr[i]<<std::endl;
}
// *** 求解目标图片的累积直方图(概率)分布 ***
memset(grayArr, 0, sizeof(grayArr));
for(size_t nrow = 0; nrow < dstRow; nrow++)
for(size_t ncol = 0; ncol < dstCol; ncol++)
{
int tag = dstImg.at<uchar>(nrow, ncol);
grayArr[tag]++;
}
tmp = 0;
for(int i=0; i<colvl; i++)
{
tmp += grayArr[i];
dstCdfArr[i] = tmp / (dstRow * dstCol);
}
// *** 直方图匹配算法 ***
int histMap[colvl];
int minTag;
for(int i=0; i<colvl; i++)
{
float minMap = 10.f;
for(int j=0; j<colvl; j++)
{
if (minMap > abs(srcCdfArr[i] - dstCdfArr[j]))
{
minMap = abs(srcCdfArr[i] - dstCdfArr[j]);
minTag = j;
}
}
histMap[i] = minTag;
}
for(size_t nrow = 0; nrow < out.rows; nrow++)
for(size_t ncol = 0; ncol < out.cols; ncol++)
{
int tag = out.at<uchar>(nrow, ncol);
out.at<uchar>(nrow, ncol) = histMap[tag];
}
return out;
}原图为;
需要匹配的图是;
最终输出的是图。
匹配图片的灰度累积直方图为:;
最终输出的灰度累积直方图为:
两者很接近了,证明匹配算法是可行的(当然如果我说错了,欢迎打脸,共同进步哈哈~)
原文:http://blog.csdn.net/ironyoung/article/details/40459625