题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2205
题意:
给定一个有向网络,每条边均有一个容量。问是否存在一个从点1->n,流量为C的流。如果不存在,是否可以恰好修改一条弧的容量,使得这样的流存在?
第一行输入 N ,E, C (n个点, e条边)
下面e行u v cap 表示边
若最大流>=c 直接输出 possible
若要修改 则输出possible option: 和弧的列表(左端点小到大排序,再右端点小到大排序)
若不存在 则输出 not possible
思路:
先求一次最大流,>=c直接输出答案
否则,修改边(修改有意义的边一定是满流的(即最小割中的边))
一个优化:求完最大流后把流量留着,以后每次在它的基础上增广
#include<stdio.h> #include<algorithm> #include<stdlib.h> #include<vector> #include<string.h> #include<iostream> #include<math.h> #include<queue> #include<map> using namespace std; #define ll long long #define N 1005 #define M 20000 #define inf 536870912 //N为点数 M为边数 struct Edge{ int from, to, cap, nex; }edge[M*10];//注意这个一定要够大 不然会re 还有反向弧 int head[N], edgenum; void addedge(int u, int v, int cap){ Edge E = { u, v, cap, head[u]}; edge[ edgenum ] = E; head[u] = edgenum ++; Edge E2= { v, u, 0, head[v]}; edge[ edgenum ] = E2; head[v] = edgenum ++; } int sign[N], s, t; bool BFS(int from, int to){ memset(sign, -1, sizeof(sign)); sign[from] = 0; queue<int>q; q.push(from); while( !q.empty() ){ int u = q.front(); q.pop(); for(int i = head[u]; i!=-1; i = edge[i].nex) { int v = edge[i].to; if(sign[v]==-1 && edge[i].cap) { sign[v] = sign[u] + 1, q.push(v); if(sign[to] != -1)return true; } } } return false; } int Stack[M*4], top, cur[M*4]; struct Change{ int sign, val; Change(int a=0,int b=0):sign(a),val(b){} }haha[M*10]; int hahatop; void release(){ for(int i = 0; i < hahatop; i++) edge[haha[i].sign].cap += haha[i].val; } int dinic(){ hahatop = 0; int ans = 0; while( BFS(s, t) ) { memcpy(cur, head, sizeof(head)); int u = s; top = 0; while(1) { if(u == t) { int flow = inf, loc;//loc 表示 Stack 中 cap 最小的边 for(int i = 0; i < top; i++) if(flow > edge[ Stack[i] ].cap) { flow = edge[Stack[i]].cap; loc = i; } for(int i = 0; i < top; i++) { edge[ Stack[i] ].cap -= flow; edge[Stack[i]^1].cap += flow; haha[hahatop++] = Change(Stack[i], flow); haha[hahatop++] = Change(Stack[i]^1, -flow); } ans += flow; top = loc; u = edge[Stack[top]].from; } for(int i = cur[u]; i!=-1; cur[u] = i = edge[i].nex)//cur[u] 表示u所在能增广的边的下标 if(edge[i].cap && (sign[u] + 1 == sign[ edge[i].to ]))break; if(cur[u] != -1) { Stack[top++] = cur[u]; u = edge[ cur[u] ].to; } else { if( top == 0 )break; sign[u] = -1; u = edge[ Stack[--top] ].from; } } } return ans; } int n, e, c; struct Ans{ int f, t; bool operator<(const Ans a)const{ if(a.f == f)return a.t>t; return a.f>f; } Ans(int a=0,int b=0):f(a),t(b){} }ans[M*2]; int main(){ int i, j, u, v, cap, Cas = 1; while(scanf("%d %d %d",&n,&e,&c), n+e+c){ memset(head, -1, sizeof(head)); edgenum = 0; while(e--){ scanf("%d %d %d",&u,&v,&cap); addedge(u,v,cap); } printf("Case %d: ", Cas++); s = 1; t = n; int maxflow = dinic(); if(maxflow >= c){puts("possible");continue;} int anstop = 0; for(i = 0; i < edgenum; i+=2)if(edge[i].cap == 0){ edge[i].cap += c; if(dinic()+maxflow>=c)ans[anstop++] = Ans(edge[i].from,edge[i].to); release(); edge[i].cap = 0; } if(anstop==0)puts("not possible"); else { sort(ans, ans+anstop); printf("possible option"); for(i=0;i<anstop;i++)printf("%c(%d,%d)",i?‘,‘:‘:‘,ans[i].f,ans[i].t); puts(""); } } return 0; } /* 4 4 5 1 2 5 1 3 5 2 4 5 3 4 5 4 4 5 1 2 1 1 3 5 2 4 5 3 4 1 4 4 5 1 2 1 1 3 1 2 4 1 3 4 1 0 0 0 */
Uva 11248 求只修改一条边的流量使得最大流>c 的所有可行边
原文:http://blog.csdn.net/acmmmm/article/details/19765117