We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates.
3 2 1 2 -3 1 2 1 1 2 0 2 0 0
Case 1: 2 Case 2: 1
解题思路:
此题意思给定点集S={(xi,yi)i=1.2.3...n},求用圆心在x轴上,半径为d的圆覆盖S所需的圆的最少个数。
1.先把给出的岛的坐标(xi.yi)和半径r转化为在x轴上的区间,即当d-yi>=0时,圆心位于x轴上的区间为Ii=[ xi-sqrt(d^2-yi^2) , xi + sqrt( d^2 - yi^2 )],则转化为区间选点问题。
2.S中点(xi,yi),对应一个在x轴上的区间Ii=(li,ri),按照区间右端点ri从小到大排序,在区间集合中选择一个索引最小的区间,把选择的区间和与其相交的所有区间作为一组从T中删除,直到T为空集、
3则剩下的分组的组数即为m的最小值。。。
AC代码:
#include<cstdio> #include<cmath> #include<algorithm> #define MAX 1010 using namespace std; class Range { public: float left; float right; bool operator<(const Range &r)const { if(right<r.right||(right==r.right&&left>r.left)) return true; else return false; } }; int main(int argc,char *argv[]) { int n,d; int x,y; int i,j; int count=1,ans; while(scanf("%d%d",&n,&d)&&(n+d)) { Range r[MAX]; j=0; ans=0; for(i=0;i<n;i++) { Range temp; scanf("%d%d",&x,&y); if(d>=y) { temp.left=x-sqrt(d*d-y*y); temp.right=x+sqrt(d*d-y*y); r[j++]=temp; } } sort(r,r+j); if(j<n) printf("Case %d: -1\n",count); else { float end=-0x0FFFFFFF; for(i=0;i<j;i++) { if(end<r[i].left) { ans++; end=r[i].right; } } printf("Case %d: %d\n",count,ans); } count++; } return 0; }
原文:http://blog.csdn.net/cstopcoder/article/details/19761931