题意:给定一些字符串,每次可以选两个a,b出来,a的前缀和b的后缀的最长公共长度就是获得的值,字符串不能重复选,问最大能获得多少值
思路:KM最大匹配,两两串建边,跑最大匹配即可
代码:
#include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; const int MAXNODE = 205; typedef int Type; const Type INF = 0x3f3f3f3f; struct KM { int n, m; Type g[MAXNODE][MAXNODE]; Type Lx[MAXNODE], Ly[MAXNODE], slack[MAXNODE]; int left[MAXNODE], right[MAXNODE]; bool S[MAXNODE], T[MAXNODE]; void init(int n, int m) { this->n = n; this->m = m; memset(g, 0, sizeof(g)); } void add_Edge(int u, int v, Type val) { g[u][v] = val; } bool dfs(int i) { S[i] = true; for (int j = 0; j < m; j++) { if (T[j]) continue; Type tmp = Lx[i] + Ly[j] - g[i][j]; if (!tmp) { T[j] = true; if (left[j] == -1 || dfs(left[j])) { left[j] = i; right[i] = j; return true; } } else slack[j] = min(slack[j], tmp); } return false; } void update() { Type a = INF; for (int i = 0; i < m; i++) if (!T[i]) a = min(a, slack[i]); for (int i = 0; i < n; i++) if (S[i]) Lx[i] -= a; for (int i = 0; i < m; i++) if (T[i]) Ly[i] += a; } Type km() { memset(left, -1, sizeof(left)); memset(right, -1, sizeof(right)); memset(Ly, 0, sizeof(Ly)); for (int i = 0; i < n; i++) { Lx[i] = -INF; for (int j = 0; j < m; j++) Lx[i] = max(Lx[i], g[i][j]); } for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) slack[j] = INF; while (1) { memset(S, false, sizeof(S)); memset(T, false, sizeof(T)); if (dfs(i)) break; else update(); } } Type ans = 0; for (int i = 0; i < n; i++) { if (right[i] == -1) return -1; if (g[i][right[i]] == -INF) return -1; ans += g[i][right[i]]; } return ans; } } gao; int n; char str[205][1005]; int cal(char *a, char *b) { int an = strlen(a), bn = strlen(b); int tot = min(an, bn); int cnt = 0; for (int i = 0; i < tot; i++) { if (a[i] != b[bn - i - 1]) break; cnt++; } return cnt; } int main() { while (~scanf("%d", &n)) { gao.init(n, n); for (int i = 0; i < n; i++) { scanf("%s", str[i]); for (int j = 0; j < i; j++) { gao.add_Edge(i, j, cal(str[i], str[j])); gao.add_Edge(j, i, cal(str[j], str[i])); } } printf("%d\n", gao.km()); } return 0; }
原文:http://blog.csdn.net/accelerator_/article/details/40659387