2 1 2 3 1 2 3
2 20HintFor the second test case, all continuous sub-sequences are [1], [2], [3], [1, 2], [2, 3] and [1, 2, 3]. So the sum of the sum of the sub-sequences is 1 + 2 + 3 + 3 + 5 + 6 = 20. Huge input, faster I/O method is recommended. And as N is rather big, too straightforward algorithm (for example, O(N^2)) will lead Time Limit Exceeded. And one more little helpful hint, be careful about the overflow of int.
给定n个数的数列,求所有连续区间的和。。最简单的一道题,智商捉急啊,没想到。。。。
对于当前第i个数(i>=1),我们只要知道有多少个区间包含a[i]就可以了,答案是 i*(n-i+1), i代表第i个数前面有多少个数,包括它自己,(n-i+1)代表第i个数后面有多少个数,包括它自己,然后相乘,代表前面的标号和后边的标号两两配对。
如图:
上图数列取得不恰当,标号和数正好相等,比如数列1,4,2,4,5,图也是和上图一样的。关键的是标号,而不是具体的数。
代码:
#include <iostream>
#include <stdio.h>
using namespace std;
#define ll long long
const ll mod=1000000007;
ll n;
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%I64d",&n);
ll x;
ll ans=0;
for(ll i=1;i<=n;i++)
{
scanf("%I64d",&x);
ans=(ans+i*(n-i+1)%mod*x%mod)%mod;
}
printf("%I64d\n",ans);
}
return 0;
}
[ACM] HDU 5086 Revenge of Segment Tree(所有连续区间的和)
原文:http://blog.csdn.net/sr_19930829/article/details/40707173