Floyd算法的基本思想如下:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B。所以,我们假设Dis(AB)为节点A到节点B的最短路径的距离,对于每一个节点X,我们检查Dis(AX) + Dis(XB) < Dis(AB)是否成立,如果成立,证明从A到X再到B的路径比A直接到B的路径短,我们便设置Dis(AB) = Dis(AX) + Dis(XB),这样一来,当我们遍历完所有节点X,Dis(AB)中记录的便是A到B的最短路径的距离。
很简单吧,代码看起来可能像下面这样:
for (int i
= 0; i < 节点个数; ++i ){ for (int j
= 0; j < 节点个数; ++j ) { for (int k
= 0; k < 节点个数; ++k ) { if (
Dis[i][k] + Dis[k][j] < Dis[i][j] ) { //
找到更短路径 Dis[i][j]
= Dis[i][k] + Dis[k][j]; } } }} |
但是这里我们要注意循环的嵌套顺序,如果把检查所有节点X放在最内层,那么结果将是不正确的,为什么呢?因为这样便过早的把i到j的最短路径确定下来了,而当后面存在更短的路径时,已经不再会更新了。
让我们来看一个例子,看下图:

图中红色的数字代表边的权重。如果我们在最内层检查所有节点X,那么对于A->B,我们只能发现一条路径,就是A->B,路径距离为9。而这显然是不正确的,真实的最短路径是A->D->C->B,路径距离为6。造成错误的原因就是我们把检查所有节点X放在最内层,造成过早的把A到B的最短路径确定下来了,当确定A->B的最短路径时Dis(AC)尚未被计算。所以,我们需要改写循环顺序,如下:
for (int k
= 0; k < 节点个数; ++k ){ for (int i
= 0; i < 节点个数; ++i ) { for (int j
= 0; j < 节点个数; ++j ) { if (
Dis[i][k] + Dis[k][j] < Dis[i][j] ) { //
找到更短路径 Dis[i][j]
= Dis[i][k] + Dis[k][j]; } } }} |
这样一来,对于每一个节点X,我们都会把所有的i到j处理完毕后才继续检查下一个节点。
那么接下来的问题就是,我们如何找出最短路径呢?这里需要借助一个辅助数组Path,它是这样使用的:Path(AB)的值如果为P,则表示A节点到B节点的最短路径是A->...->P->B。这样一来,假设我们要找A->B的最短路径,那么就依次查找,假设Path(AB)的值为P,那么接着查找Path(AP),假设Path(AP)的值为L,那么接着查找Path(AL),假设Path(AL)的值为A,则查找结束,最短路径为A->L->P->B。
那么,如何填充Path的值呢?很简单,当我们发现Dis(AX) + Dis(XB) < Dis(AB)成立时,就要把最短路径改为A->...->X->...->B,而此时,Path(XB)的值是已知的,所以,Path(AB) = Path(XB)。
好了,基本的介绍完成了,接下来就是实现的时候了,这里我们使用图以及邻接矩阵:
#define
INFINITE 1000 // 最大值#define
MAX_VERTEX_COUNT 20 // 最大顶点个数//////////////////////////////////////////////////////////////////////////struct Graph{ int arrArcs[MAX_VERTEX_COUNT][MAX_VERTEX_COUNT]; //
邻接矩阵 int nVertexCount;
//
顶点数量 int nArcCount;
//
边的数量};////////////////////////////////////////////////////////////////////////// |
首先,我们写一个方法,用于读入图的数据:
void readGraphData(
Graph *_pGraph ){ std::cout
<< "请输入顶点数量和边的数量:
"; std::cin
>> _pGraph->nVertexCount; std::cin
>> _pGraph->nArcCount; std::cout
<< "请输入邻接矩阵数据:" <<
std::endl; for (int row
= 0; row < _pGraph->nVertexCount; ++row ) { for (int col
= 0; col < _pGraph->nVertexCount; ++col ) { std::cin
>> _pGraph->arrArcs[row][col]; } }} |
接着,就是核心的Floyd算法:
void floyd(int _arrDis[][MAX_VERTEX_COUNT],int _arrPath[][MAX_VERTEX_COUNT],int _nVertexCount
){ //
先初始化_arrPath for (int i
= 0; i < _nVertexCount; ++i ) { for (int j
= 0; j < _nVertexCount; ++j ) { _arrPath[i][j]
= i; } } ////////////////////////////////////////////////////////////////////////// for (int k
= 0; k < _nVertexCount; ++k ) { for (int i
= 0; i < _nVertexCount; ++i ) { for (int j
= 0; j < _nVertexCount; ++j ) { if (
_arrDis[i][k] + _arrDis[k][j] < _arrDis[i][j] ) { //
找到更短路径 _arrDis[i][j]
= _arrDis[i][k] + _arrDis[k][j]; _arrPath[i][j]
= _arrPath[k][j]; } } } }} |
OK,最后是输出结果数据代码:
void printResult(int _arrDis[][MAX_VERTEX_COUNT],int _arrPath[][MAX_VERTEX_COUNT],int _nVertexCount
){ std::cout
<< "Origin
-> Dest Distance Path" <<
std::endl; for (int i
= 0; i < _nVertexCount; ++i ) { for (int j
= 0; j < _nVertexCount; ++j ) { if (
i != j ) //
节点不是自身 { std::cout
<< i+1 << "
-> " <<
j+1 << "\t\t"; if (
INFINITE == _arrDis[i][j] ) //
i -> j 不存在路径 { std::cout
<< "INFINITE" <<"\t\t"; } else { std::cout
<< _arrDis[i][j] << "\t\t"; //
由于我们查询最短路径是从后往前插,因此我们把查询得到的节点 //
压入栈中,最后弹出以顺序输出结果。 std::stack<int>
stackVertices; int k
= j; do { k
= _arrPath[i][k]; stackVertices.push(
k ); }while (
k != i ); ////////////////////////////////////////////////////////////////////////// std::cout
<< stackVertices.top()+1; stackVertices.pop(); unsignedint nLength
= stackVertices.size(); for (
unsigned int nIndex
= 0; nIndex < nLength; ++nIndex ) { std::cout
<< "
-> " <<
stackVertices.top()+1; stackVertices.pop(); } std::cout
<< "
-> " <<
j+1 << std::endl; } } } }} |
好了,是时候测试了,我们用的图如下:

测试代码如下:
int main(void ){ Graph
myGraph; readGraphData(
&myGraph ); ////////////////////////////////////////////////////////////////////////// int arrDis[MAX_VERTEX_COUNT][MAX_VERTEX_COUNT]; int arrPath[MAX_VERTEX_COUNT][MAX_VERTEX_COUNT]; //
先初始化arrDis for (int i
= 0; i < myGraph.nVertexCount; ++i ) { for (int j
= 0; j < myGraph.nVertexCount; ++j ) { arrDis[i][j]
= myGraph.arrArcs[i][j]; } } floyd(
arrDis, arrPath, myGraph.nVertexCount ); ////////////////////////////////////////////////////////////////////////// printResult(
arrDis, arrPath, myGraph.nVertexCount ); ////////////////////////////////////////////////////////////////////////// system("pause" ); return 0;} |
如图:

哈哈,如何,看起来简单吧。那大家还等什么,打开自己桌面上的开发工具,试试啦!
原文:http://blog.csdn.net/urtheappleinmyeye/article/details/19820085