首页 > 其他 > 详细

ASC #1

时间:2014-11-05 00:03:32      阅读:625      评论:0      收藏:0      [点我收藏+]

开始套题训练,第一套ASC题目,记住不放过每一题,多独立思考。

Problem A ZOJ 2313 Chinese Girls‘ Amusement 循环节

题意:给定n,为圆环长度,求k <= n/2,从1出发,每次顺时针方向走k步,即1->k+1->2*k+1,直到遇到一个已经走过的点结束,要求最终把所有点访问一遍,最后回到1,使得k尽量大。

代码:

 

Problem B ZOJ 2314 Reactor Cooling 无源汇上下界网络流

题意:经典题,有上下界无源无汇的可行流,对于每条边u->v,上界流量C(u,v),下界流量B(u, v),可以这样构图,建立附加源点S,T对于每条边u->v,在流量图中连一条容量为C(u, v)-B(u, v)的边,同时S->v连容量B(u, v) 的边,u->T连B(u, v) 的边,跑一遍网络流,当从S出发的边满流时,有可行流,原图中每条边流量为相应B(u, v)+最大流图中流量g(u, v).

代码:

bubuko.com,布布扣
  1 #include <bits/stdc++.h>
  2 #define pb push_back
  3 #define mp make_pair
  4 
  5 #define lson   l, m, rt<<1
  6 #define rson   m+1, r, rt<<1|1
  7 #define sz(x) ((int)((x).size()))
  8 #define pb push_back
  9 #define in freopen("solve_in.txt", "r", stdin);
 10 #define bug(x) printf("Line : %u >>>>>>\n", (x));
 11 #define inf 0x0f0f0f0f
 12 using namespace std;
 13 typedef long long LL;
 14 typedef map<int, int> MPS;
 15 typedef pair<int, int> PII;
 16 const int maxn = 222;
 17 struct Node {
 18     int c, l, id;
 19     Node() {}
 20     Node(int c, int l, int id):c(c), l(l), id(id) {}
 21 };
 22 vector<Node> cap;
 23 
 24 
 25 struct Edge {
 26     int u, v, c;
 27     Edge(int u, int v, int c):u(u), v(v), c(c) {}
 28 };
 29 struct Max_flow {
 30     int n, m;
 31     int src, sink;
 32     vector<Edge> edges;
 33     vector<int> G[maxn];
 34     int Now[maxn], Dfn[maxn], cur[maxn];
 35     void init(int n) {
 36         this->n = n;
 37         for(int i = 0; i < n; i++) G[i].clear();
 38         edges.clear();
 39     }
 40     void add(int u, int v, int c) {
 41         edges.pb(Edge(u, v, c));
 42         edges.pb(Edge(v, u, 0));
 43         m = edges.size();
 44         G[u].pb(m-2);
 45         G[v].pb(m-1);
 46     }
 47     int ISAP(int s, int flow) {
 48         if(s == sink)
 49             return flow;
 50         int i, tab = n, vary, now = 0;
 51         int p = cur[s];
 52         do {
 53             Edge &e = edges[G[s][cur[s]]];
 54             if(e.c > 0) {
 55                 if(Dfn[s] == Dfn[e.v]+1)
 56                     vary = ISAP(e.v, min(flow-now, e.c)),
 57                     now += vary, e.c -= vary, edges[G[s][cur[s]]^1].c += vary;
 58                 if(Dfn[src] == n)
 59                     return now;
 60                 if(e.c > 0) tab = min(tab, Dfn[e.v]);
 61                 if(flow == now)
 62                     break;
 63             }
 64             cur[s]++;
 65             if(cur[s] == (int)G[s].size()) cur[s] = 0;
 66         } while(p != cur[s]);
 67         if(now == 0) {
 68             if(--Now[Dfn[s]] == 0)
 69                 Dfn[src] = n;
 70             Now[Dfn[s] = tab+1]++;
 71         }
 72         return now;
 73     }
 74     int max_flow(int src, int sink) {
 75         this->src = src;
 76         this->sink = sink;
 77         int flow = 0;
 78         memset(Dfn, 0, sizeof Dfn);
 79         memset(Now, 0, sizeof Dfn);
 80         memset(cur, 0, sizeof cur);
 81         Now[0] = n;
 82         for(; Dfn[src] < n;)
 83             flow += ISAP(src, inf);
 84         return flow;
 85     }
 86 } mc;
 87 vector<int> mx;
 88 
 89 int main() {
 90     
 91     int T;
 92     for(int t = scanf("%d", &T); t <= T; t++) {
 93         int n, m;
 94         cap.clear();
 95         mx.clear();
 96 
 97         scanf("%d%d", &n, &m);
 98         mc.init(n+2);
 99         int src = n, sink = n+1;
100 
101         for(int i = 1; i <= m; i++) {
102             int u, v, c, l;
103             scanf("%d%d%d%d", &u, &v, &l, &c);
104             u--, v--;
105             mc.add(u, v, c-l);
106             int tmp = mc.edges.size()-2;
107             cap.pb(Node(c, l, tmp));
108             mc.add(src, v, l);
109             tmp = mc.edges.size()-2;
110             mx.pb(tmp);
111             mc.add(u, sink, l);
112         }
113         int flow = mc.max_flow(src, sink);
114 ////        cout << flow << endl;
115         int ok = 1;
116         for(int i = 0; i < (int)mx.size(); i++) {
117             int id = mx[i];
118             if(mc.edges[id].c) {
119                 ok = 0;
120                 break;
121             }
122         }
123 
124         if(t != 1) puts("");
125         if(ok) {
126             puts("YES");
127             for(int i = 0; i < (int)cap.size(); i++) {
128                 Node x = cap[i];
129                 int id = x.id;
130                 printf("%d\n", x.c-mc.edges[id].c);
131             }
132         } else puts("NO");
133     }
134     return 0;
135 }
View Code

关于上下界网络流补充资料:http://blog.sina.com.cn/s/blog_76f6777d0101bara.html


Problem C ZOJ 2315 New Year Bonus Grant 树形dp或贪心

题意:以1为根的树中,每个结点可以从父节点获得一个奖励,或者自己给其中一个子节点的奖励,或者既不获得也不给出奖励。求所有结点获得的最大奖励数目

分析:我是用树形dp做的,dp[u][i],i为1表示从父亲结点获得奖励时该子树最大奖励和,dp[u][0]为不从父节点获得奖励时该子树的最大奖励和。

代码:

bubuko.com,布布扣
 1 #include <bits/stdc++.h>
 2 #define pb push_back
 3 #define mp make_pair
 4 
 5 #define lson   l, m, rt<<1
 6 #define rson   m+1, r, rt<<1|1
 7 #define sz(x) ((int)((x).size()))
 8 #define pb push_back
 9 #define in freopen("solve_in.txt", "r", stdin);
10 #define bug(x) printf("Line : %u >>>>>>\n", (x));
11 #define inf 0x0f0f0f0f
12 using namespace std;
13 typedef long long LL;
14 typedef map<int, int> MPS;
15 typedef pair<int, int> PII;
16 const int maxn = (int)5e5 + 100;
17 vector<int> g[maxn];
18 int dp[maxn][2], pa[maxn];
19 void dfs(int u, int fa) {
20     int sum = 0;
21     dp[u][0] = dp[u][1] = -1;
22     pa[u] = -1;
23     for(int i = 0; i < sz(g[u]); i++) {
24         int v = g[u][i];
25         if(v == fa) continue;
26         dfs(v, u);
27         sum += dp[v][0];
28     }
29     dp[u][1] = 1 + sum;
30     dp[u][0] = sum;
31     for(int i = 0; i < sz(g[u]); i++) {
32         int v = g[u][i];
33         if(v == fa) continue;
34         if(sum-dp[v][0]+dp[v][1] > dp[u][0])
35             dp[u][0] = sum-dp[v][0]+dp[v][1], pa[u] = v;
36     }
37 }
38 vector<int> ans;
39 void printAns(int u, int st, int fa) {
40     if(st) ans.pb(u);
41     for(int i = 0; i < sz(g[u]); i++) {
42         int v = g[u][i];
43         if(v == fa) continue;
44         printAns(v, v == pa[u] && !st, u);
45     }
46 }
47 int main() {
48     
49     int T;
50     for(int t = scanf("%d", &T); t <= T; t++) {
51         if(t != 1) puts("");
52         int n;
53         ans.clear();
54         scanf("%d", &n);
55         for(int i = 1; i <= n; i++) g[i].clear();
56         for(int i = 1; i < n; i++) {
57             int u;
58             scanf("%d", &u);
59             g[u].pb(i+1);
60         }
61         dfs(1, 0);
62         printf("%d\n", 1000*dp[1][0]);
63         printAns(1, 0, 0);
64         sort(ans.begin(), ans.end());
65         for(int i = 0; i < (int)ans.size(); i++) {
66             printf("%d%c", ans[i], i == (int)ans.size()-1 ? \n :  );
67         }
68     }
69     return 0;
70 }
View Code

 


Problem D ZOJ 2316 Matrix Multiplication 顶点度数

题意:给定一个图,n个顶点,m条边,最终就是要你求每个点度数平方之和。

分析:注意防止溢出。

bubuko.com,布布扣
 1 #include <bits/stdc++.h>
 2 #define pb push_back
 3 #define mp make_pair
 4 
 5 #define lson   l, m, rt<<1
 6 #define rson   m+1, r, rt<<1|1
 7 #define sz(x) ((int)((x).size()))
 8 #define pb push_back
 9 #define in freopen("solve_in.txt", "r", stdin);
10 #define bug(x) printf("Line : %u >>>>>>\n", (x));
11 #define inf 0x0f0f0f0f
12 using namespace std;
13 typedef long long LL;
14 typedef map<int, int> MPS;
15 MPS mps;
16 
17 const int maxn = 10000 + 100;
18 int num[maxn];
19 int cnt;
20 
21 int idx(int x){
22     if(mps.count(x) == false)
23         mps[x] = ++cnt;
24     return mps[x];
25 }
26 int main(){
27     
28     int T;
29     for(int t = scanf("%d", &T); t <= T; t++){
30         memset(num, 0, sizeof num);
31         int n, m;
32         mps.clear();
33         cnt = 0;
34         scanf("%d%d", &n, &m);
35         for(int i = 1; i <= m; i++){
36             int u, v;
37             scanf("%d%d", &u, &v);
38             u = idx(u);
39             v = idx(v);
40             num[u]++, num[v]++;
41         }
42         LL ans = 0;
43         for(int i = 1; i <= n;i++){
44             ans += (LL)num[i]*num[i];
45         }
46         if(t != 1) puts("");
47         printf("%lld\n", ans);
48     }
49     return 0;
50 }
View Code

 


Problem E ZOJ 2317 Nice Patterns Strike Back 矩阵快速幂,组合数

题意:一个n*m的方格,每个格子有两种颜色,现在给整个方格涂色,要求一个2*2的正方形内颜色不能相同,问有多少种颜色,m<=5, n <= 10^100,最终结果模p,p <= 10000。

分析:由于能否构成同样颜色正方形取决于当前列连续2格以及前一列的对应两列是否颜色一样,所以对每列的状态,st看能从哪些状态st‘转移过来。这样可以建立一个转移图

边u->v表示前一列状态为u下列可为v。dp[i+1][u]  = sum{dp[i][v]},可以得到一个矩阵,g[v][u]表示v转移到u,那么答案就是g^n然后取结果矩阵sum{g[i][0]}之和。

代码:

bubuko.com,布布扣
  1 #include <iostream>
  2 #include <cstdio>
  3 #include <map>
  4 #include <cstring>
  5 #include <vector>
  6 #include <cmath>
  7 #include <cassert>
  8 #include <algorithm>
  9 #define pb push_back
 10 #define mp make_pair
 11 #define esp 1e-8
 12 #define lson   l, m, rt<<1
 13 #define rson   m+1, r, rt<<1|1
 14 #define sz(x) ((int)((x).size()))
 15 #define pb push_back
 16 #define in freopen("solve_in.txt", "r", stdin);
 17 #define bug(x) printf("Line : %u >>>>>>\n", (x));
 18 #define inf 0x0f0f0f0f
 19 using namespace std;
 20 typedef long long LL;
 21 typedef map<int, int> MPS;
 22 typedef pair<int, int> PII;
 23 
 24 const int maxn = 111;
 25 const int maxm = 44;
 26 const int B = 10000;
 27 int m, p;
 28 
 29 struct BigInt {
 30     int dig[maxn], len;
 31     BigInt(int num = 0):len(!!num) {
 32         memset(dig, 0, sizeof dig);
 33         dig[0] = num;
 34     }
 35     int operator [](int x)const {
 36         return dig[x];
 37     }
 38     int& operator [](int x) {
 39         return dig[x];
 40     }
 41     BigInt normalize() {
 42         while(len && dig[len-1] == 0) len--;
 43         return *this;
 44     }
 45     void output() {
 46         if(len == 0) {
 47             puts("0");
 48             return;
 49         }
 50         printf("%d", dig[len-1]);
 51         for(int i = len-2; i >= 0; i--)
 52             printf("%04d", dig[i]);
 53         puts("");
 54     }
 55 };
 56 BigInt operator / (BigInt a, int b) {
 57     BigInt c;
 58     c.len = a.len;
 59     for(int i = a.len-1, delta = 0; i >= 0; i--) {
 60         delta = delta*B+a[i];
 61         c[i] = delta/b;
 62         delta %= b;
 63     }
 64     return c.normalize();
 65 }
 66 bool operator == (const BigInt &a, const BigInt &b) {
 67     if(a.len != b.len) return false;
 68     for(int i = a.len-1; i >= 0; i--) if(a[i] != b[i]) return false;
 69     return true;
 70 }
 71 struct Matrix {
 72     int a[maxm][maxm];
 73     Matrix() {
 74         memset(a, 0, sizeof a);
 75     }
 76 };
 77 Matrix operator * (const Matrix &a, const Matrix &b) {
 78     Matrix c;
 79     for(int i = 0; i < (1<<m)+1; i++) for(int j = 0; j < (1<<m)+1; j++) {
 80             for(int k = 0; k < (1<<m)+1; k++)
 81                 c.a[i][j] = (c.a[i][j] + (LL)a.a[i][k]*b.a[k][j]%p)%p;
 82         }
 83     return c;
 84 }
 85 char s[111];
 86 int b[] = {1, 10, 100, 1000};
 87 
 88 bool check(int x, int y) {
 89     for(int i = 0; i < m-1; i++) {
 90         if((((x>>i)&1) && ((x>>(i+1))&1)
 91                 && ((y>>i)&1) && ((y>>(i+1))&1)) || (!((x>>i)&1) && !((x>>(i+1))&1)
 92                 && !((y>>i)&1) && !((y>>(i+1))&1)))
 93             return false;
 94     }
 95     return true;
 96 }
 97 int main() {
 98     
 99 
100     int T;
101     for(int t = scanf("%d", &T); t <= T; t++) {
102         if(t != 1) puts("");
103         scanf("%s%d%d", s, &m, &p);
104         int len = strlen(s);
105         BigInt c;
106         for(int i = len-1; i >= 0; i--) {
107             c[(len-1-i)/4] += b[(len-1-i)%4]*(s[i]-0);
108             c.len = max(c.len, (len-1-i)/4+1);
109         }
110         Matrix res, g;
111         for(int i = 0; i < maxm; i++) for(int j = 0; j < maxm; j++) res.a[i][j] = i == j;
112         for(int i = 0; i < (1<<m); i++) {
113             g.a[i+1][0] = 1;
114             for(int j = 0; j < (1<<m); j++) if(check(i, j)) {
115                     g.a[j+1][i+1] = 1;
116                 }
117         }
118         while(c.len) {
119             if(c[0]&1) res = res*g;
120             g = g*g;
121             c = c/2;
122         }
123         int ans = 0;
124         for(int i = 1; i <= (1<<m); i++)
125             ans = (ans + res.a[i][0])%p ;
126         printf("%d\n", ans);
127     }
128     return 0;
129 }
View Code

 一个升级版的题目,不过要用到中国剩余定理:

hdu 4878 ZCC loves words AC自动机+中国剩余定理+快速幂


Problem F ZOJ 2318 Get Out! 有向角度判别法,spfa判负环

题意:给定一些圆,然后自己也是一个圆能否从中突出重围。

分析:将自己的半径加到其他圆上面,并平移坐标系以自己所在坐标为原点,将相交的圆心连一条边,然后问题变成了,看是否有一个多边形包围原点。利用有向视角判别法,每条边两个顶点与原点构成的角度a作为权值,对应原来的边建图,两条有向边,权值对应为a和-a。这样就看原图是否有负环了。利用spfa判别就行。位于多边形外面时显然角度和位0。内部则为360或-360度

注意:本题分析显然不会位于多边形顶点或边界上面,否则可能会出错?spfa判别法注意精度。

代码:

bubuko.com,布布扣
  1 #include <iostream>
  2 #include <cstdio>
  3 #include <map>
  4 #include <cstring>
  5 #include <vector>
  6 #include <cmath>
  7 #include <cassert>
  8 #include <algorithm>
  9 #include <queue>
 10 #define pb push_back
 11 #define mp make_pair
 12 #define esp 1e-8
 13 #define lson   l, m, rt<<1
 14 #define rson   m+1, r, rt<<1|1
 15 #define sz(x) ((int)((x).size()))
 16 #define pf(x) ((x)*(x))
 17 #define pb push_back
 18 #define in freopen("solve_in.txt", "r", stdin);
 19 #define bug(x) printf("Line : %u >>>>>>\n", (x));
 20 #define inf 0x0f0f0f0f
 21 using namespace std;
 22 typedef long long LL;
 23 typedef map<int, int> MPS;
 24 typedef pair<int, int> PII;
 25 
 26 const int maxn = 333;
 27 double x[maxn], y[maxn], r[maxn], len[maxn];
 28 
 29 struct Edge {
 30     int u, v;
 31     double w;
 32     Edge() {}
 33     Edge(int u, int v, double w):u(u), v(v), w(w) {}
 34 };
 35 vector<Edge> edges;
 36 vector<int> g[maxn];
 37 int n, m;
 38 
 39 void init() {
 40     edges.clear();
 41     for(int i = 0; i < maxn; i++) g[i].clear();
 42 }
 43 void add(int u, int v, double w) {
 44     edges.pb(Edge(u, v, w));
 45     m = edges.size();
 46     g[u].pb(m-1);
 47 }
 48 inline bool check(double x1, double y1, double x2, double y2) {
 49     return (x1*y2-y1*x2) >= 0;
 50 }
 51 int inq[maxn];
 52 double dist[maxn];
 53 int cnt[maxn];
 54 
 55 bool spfa() {
 56     queue<int> q;
 57     memset(inq, 0, sizeof inq);
 58     for(int i = 1; i <= n; i++) {
 59         inq[1] = 1;
 60         cnt[i] = 0;
 61         dist[i] = 0;
 62         q.push(i);
 63     }    while(q.size()) {
 64         int u = q.front();
 65         q.pop();
 66         inq[u] = 0;
 67         for(int i = 0; i < sz(g[u]); i++) {
 68             Edge e = edges[g[u][i]];
 69             int v = e.v;
 70             double c = e.w;
 71             if(dist[v] > dist[u] + c + esp) {
 72                 if(dist[v] = dist[u] + c, !inq[v]) {
 73                     q.push(v);
 74                     inq[v] = 1;
 75                     if(++cnt[v] > n + 10) {
 76                         return true;
 77                     }
 78                 }
 79             }
 80         }
 81     }
 82     return false;
 83 }
 84 int main() {
 85     
 86     int T;
 87     for(int t = scanf("%d", &T); t <= T; t++) {
 88         if(t != 1) puts("");
 89         init();
 90         for(int i = scanf("%d", &n); i <= n+1; i++) {
 91             scanf("%lf%lf%lf", x+i, y+i, r+i);
 92         }
 93         for(int i = 1; i <= n; i++) {
 94             x[i] -= x[n+1];
 95             y[i] -= y[n+1];
 96             len[i] = sqrt(pf(x[i])+pf(y[i]));
 97             r[i] += r[n+1];
 98         }
 99         for(int i = 1; i <= n; i++)
100             for(int j = i+1; j <= n; j++) {
101                 if(sqrt(pf(x[i]-x[j]) + pf(y[i]-y[j])) >= r[i]+r[j])
102                     continue;
103                 double ang = acos((x[i]*x[j]+y[i]*y[j])/len[i]/len[j]);
104                 bool ok = check(x[i], y[i], x[j], y[j]);
105                 add(i, j, ok ? ang : -ang);
106                 add(j, i, ok ? -ang : ang);
107             }
108         if(spfa())
109             puts("NO");
110         else puts("YES");
111     }
112     return 0;
113 }
View Code

 

Problem G ZOJ 2319 Beautiful People LIS

题意:有n个元素,每个元素是一个对数ai,bi,然后从中选出一些元素,能够排成一列ai < ai+1, 且bi < bi+1,问最长选出多少个元素。

分析:看上去像是LIS,其实也是利用这个,由于ai肯定是单调递增的,所以先按ai小到大排序,bi从大到小排序,然后只要按照bi选出LIS就行了。利用O(nlogn)的经典做法可做。

代码:

bubuko.com,布布扣
 1 #include <bits/stdc++.h>
 2 #define pb push_back
 3 #define mp make_pair
 4 
 5 #define lson   l, m, rt<<1
 6 #define rson   m+1, r, rt<<1|1
 7 #define sz(x) ((int)((x).size()))
 8 #define pb push_back
 9 #define in freopen("solve_in.txt", "r", stdin);
10 #define bug(x) printf("Line : %u >>>>>>\n", (x));
11 #define inf 0x0f0f0f0f
12 using namespace std;
13 typedef long long LL;
14 typedef map<int, int> MPS;
15 typedef pair<int, int> PII;
16 
17 const int maxn = (int)1e5 + 100;
18 int f[maxn], dp[maxn];
19 MPS mps;
20 
21 struct Node {
22     int s, b, id;
23     Node() {}
24     Node(int s, int b, int id):s(s), b(b), id(id) {}
25     bool operator < (const Node &rhs)const {
26         if(s != rhs.s) return s < rhs.s;
27         return b > rhs.b;
28     }
29 } a[maxn];
30 int g[maxn];
31 int cnt;
32 int idx(int x) {
33     if(mps.count(x) == false)
34         mps[x] = ++cnt;
35     return mps[x];
36 }
37 
38 int main() {
39     
40     int T;
41     for(int t = scanf("%d", &T); t <= T; t++) {
42         int n;
43         cnt = 0;
44         if(t != 1) puts("");
45         scanf("%d", &n);
46         mps.clear();
47         for(int i = 1; i <= n; i++) {
48             scanf("%d%d", &a[i].s, &a[i].b);
49 ////            a[i].s = idx(a[i].s);
50 ////            a[i].b = idx(a[i].b);
51             a[i].id = i;
52         }
53         memset(dp, 0, sizeof dp);
54         sort(a+1, a+n+1);
55         memset(f, 0x7f, sizeof f);
56         int ans = 0, u;
57         for(int i = 1; i <= n; i++) {
58             int k = lower_bound(f+1, f+n+1, a[i].b)-f-1;
59             if(ans < k+1)
60                 ans = k+1, u = i;
61             f[k+1] = a[i].b;
62             g[k+1] = i;
63             dp[i] = g[k];
64         }
65         cout << ans << endl;
66         int ok = 0;
67         while(u) {
68             if(ok) cout <<  ;
69             else ok ^= 1;
70             cout << a[u].id;
71             u = dp[u];
72         }
73         puts("");
74     }
75     return 0;
76 }
View Code

 


Problem H ZOJ 2320 Cracking‘ RSA 高斯消元

题意:给定m个数,其素因子来自前t个素数,m <= 100,t <= 100。求m个数构成的集合,从中选出一些数构成子集,所有元素之积为完全平方数。有多少种方案。

分析:考虑每个数有选和不选两种状态,用未知量xi表示,由于最终选出来的数的积为完全平方数,所以其乘积中,对于前t个素数的数目必须为偶数个,即模2为0。

所以容易建立t个方程,对每个数分解质因数,质因数个数模2为0,这是一个线性方程组,方程一定有解,所以设自由元个数n,答案2^n-1,这里要用到大数。

代码:

 

bubuko.com,布布扣
  1 #include <iostream>
  2 #include <cstdio>
  3 #include <map>
  4 
  5 #include <cstring>
  6 #include <vector>
  7 #include <cmath>
  8 #include <cassert>
  9 #include <algorithm>
 10 #define pb push_back
 11 #define mp make_pair
 12 #define esp 1e-8
 13 #define lson   l, m, rt<<1
 14 #define rson   m+1, r, rt<<1|1
 15 #define sz(x) ((int)((x).size()))
 16 #define pb push_back
 17 #define in freopen("solve_in.txt", "r", stdin);
 18 #define bug(x) printf("Line : %u >>>>>>\n", (x));
 19 #define inf 0x0f0f0f0f
 20 using namespace std;
 21 typedef long long LL;
 22 typedef map<int, int> MPS;
 23 typedef pair<int, int> PII;
 24 
 25 const int maxn = 110;
 26 const int B = 10000;
 27 
 28 int num[maxn][maxn], prime[maxn], vis[2222];
 29 int a[maxn][maxn];
 30 void seivePrime() {
 31     int tot = 0;
 32     for(int i = 2; i < 2000; i++) {
 33         if(!vis[i]) prime[++tot] = i;
 34 
 35         for(int j = 1; j <= tot; j++){
 36             if(prime[j]*i >= 2000) break;
 37             vis[i*prime[j]] = 1;
 38             if(i%prime[j] == 0) break;
 39         }
 40         if(tot >= 150) break;
 41     }
 42 }
 43 int n, m;
 44 void getFact(int b, LL x) {
 45     for(int i = 1; i <= n; i++) {
 46         if(x%prime[i] == 0) {
 47             while(x%prime[i] == 0) {
 48                 num[b][i-1]++;
 49                 x /= prime[i];
 50             }
 51             if(x == 1)
 52                 break;
 53         }
 54     }
 55 }
 56 int Gauss(int equ, int var) {
 57     int k, r, col;
 58     for(k = col = 0; k < equ && col < var; k++, col++) {
 59         r = k;
 60         for(int i = k+1; i < equ; i++) if(a[i][col]) {
 61                 r = i;
 62                 break;
 63             }
 64         if(r != k) for(int i = col; i <= var; i++)
 65                 swap(a[r][i], a[k][i]);
 66         if(a[k][col] == 0) {
 67             k--;
 68             continue;
 69         }
 70         for(int i = k+1; i < equ; i++) if(a[i][col])
 71                 for(int j = col; j <= var; j++)
 72                     a[i][j] ^= a[k][j];
 73     }
 74     return var-k;
 75 }
 76 struct BigInt {
 77     int dig[maxn], len;
 78     BigInt(int num = 0):len(!!num) {
 79         memset(dig, 0, sizeof dig);
 80         dig[0] = num;
 81     }
 82     int operator [](int x)const {
 83         return dig[x];
 84     }
 85     int &operator [](int x) {
 86         return dig[x];
 87     }
 88     BigInt normalize() {
 89         while(len > 1 && dig[len-1] == 0) len--;
 90         return *this;
 91     }
 92     void output() {
 93         printf("%d", dig[len-1]);
 94         for(int i = len-2; i >= 0; i--)
 95             printf("%04d", dig[i]);
 96         puts("");
 97     }
 98 };
 99 BigInt operator - (BigInt a, int b) {
100     BigInt c;
101     c.len = a.len;
102     for(int i = 0, delta = -b; i < a.len; i++) {
103         c[i] = delta+a[i];
104         delta = 0;
105         if(c[i] < 0) {
106             delta = -1;
107             c[i] = c[i]+B;
108         }
109     }
110     return c.normalize();
111 }
112 BigInt operator *(BigInt a, BigInt b) {
113     BigInt c;
114     c.len = a.len+b.len+1;
115     for(int i = 0; i < a.len; i++)
116         for(int j = 0, delta = 0; j <= b.len; j++) {
117             delta += (c[i+j]+a[i]*b[j]);
118             c[i+j] = delta%B;
119             delta /= B;
120         }
121     return c.normalize();
122 }
123 void print(int x){
124      int i , len = 1 , ans[100];
125      memset(ans,0,sizeof(ans));
126      ans[1] = 1;
127      while (x--){
128            for (i=1;i<=len;++i) ans[i]*=2;
129            for (i=1;i<=len;++i)
130                ans[i+1] += ans[i]/10 , ans[i] %= 10;
131            if (ans[len+1]) ++len;
132      }
133      --ans[1];
134      for (i=len;i>=1;--i) printf("%d",ans[i]);
135      puts("");
136 }
137 int main() {
138 
139     int T;
140     seivePrime();
141     for(int t = scanf("%d", &T); t <= T; t++) {
142         if(t != 1) puts("");
143         memset(num, 0, sizeof num);
144         memset(a, 0, sizeof a);
145         scanf("%d%d", &n, &m);
146         for(int i = 0; i < m; i++) {
147             int x;
148             scanf("%d", &x);
149             for(int ii = 1; ii <= n; ii++) {
150                 if(x%prime[ii] == 0) {
151                     while(x%prime[ii] == 0) {
152                         a[ii-1][i] ^= 1;
153                         x /= prime[ii];
154                     }
155                 }
156             }
157         }
158         int vary = Gauss(n, m);
159         if(vary == 0) puts("0");
160         else
161         print(vary);
162     }
163     return 0;
164 }
View Code

 

ASC #1

原文:http://www.cnblogs.com/rootial/p/4075129.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!