首页 > 其他 > 详细

Sparse PCA: reproduction of the synthetic example

时间:2014-11-06 00:40:54      阅读:327      评论:0      收藏:0      [点我收藏+]

The paper:

Hui Zou, Trevor Hastie, and Robert Tibshirani,

Sparse Principal Component Analysis, 

Journal of computational and Graphical Statistics, 15(2): 265-286, 2006.

 

Reproduction of the Synthetic Example in Section 5.2 using R programming:

 1 library(elasticnet)
 2 
 3 ## sample version of SPCA
 4 n = 1000
 5 v1 = rnorm(n,0,sqrt(290))
 6 v2 = rnorm(n,0,sqrt(300))
 7 v3 = -.3*v1 + 0.925*v2 + rnorm(n)
 8 x1 = v1 + rnorm(n)
 9 x2 = v1 + rnorm(n)
10 x3 = v1 + rnorm(n)
11 x4 = v1 + rnorm(n)
12 
13 x5 = v2 + rnorm(n)
14 x6 = v2 + rnorm(n)
15 x7 = v2 + rnorm(n)
16 x8 = v2 + rnorm(n)
17 
18 x9 = v3 + rnorm(n)
19 x10 = v3 + rnorm(n)
20 
21 x = cbind(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10)
22 x.cov = t(x) %*% x/n; head(x.cov)
23 a = spca(x, 2, type=predictor, sparse=varnum, para=c(4,4), lambda=0)
24 a
25 ## population version of SPCA 26 g1 = matrix(290, 4, 4) 27 diag(g1) = 291 28 29 g2 = matrix(300, 4, 4) 30 diag(g2) = 301 31 32 g3 = matrix(283.7875, 2, 2) 33 diag(g3) = diag(g3)+1 34 35 36 g1g3 = matrix(-87, 4, 2) 37 g2g3 = matrix(277.5, 4, 2) 38 39 # construct the exact covariance matrix 40 x.cov = matrix(0, 10, 10) 41 x.cov[1:4,1:4] = g1 42 x.cov[5:8,5:8] = g2 43 x.cov[9:10,9:10] = g3 44 x.cov[1:4,9:10] = g1g3 45 x.cov[9:10,1:4] = t(g1g3) 46 x.cov[5:8,9:10] = g2g3 47 x.cov[9:10,5:8] = t(g2g3) 48 49 50 b = spca(x.cov, 2, type=Gram, sparse=varnum, para=c(4,4), lambda=0) 51 b

The results of the population version using exact covariance matrix are exactly as in the paper:

> b

Call:
spca(x = x.cov, K = 2, para = c(4, 4), type = "Gram", sparse = "varnum", 
    lambda = 0)

2 sparse PCs 
Pct. of exp. var. : 40.9 39.5 
Num. of non-zero loadings :  4 4 
Sparse loadings 
      PC1 PC2
 [1,] 0.0 0.5
 [2,] 0.0 0.5
 [3,] 0.0 0.5
 [4,] 0.0 0.5
 [5,] 0.5 0.0
 [6,] 0.5 0.0
 [7,] 0.5 0.0
 [8,] 0.5 0.0
 [9,] 0.0 0.0
[10,] 0.0 0.0

But the sample version may randomly vary a little.

> a

Call:
spca(x = x, K = 2, para = c(4, 4), type = "predictor", sparse = "varnum", 
    lambda = 0)

2 sparse PCs 
Pct. of exp. var. : 37.9 37.6 
Num. of non-zero loadings :  4 4 
Sparse loadings 
       PC1    PC2
x1   0.000 -0.303
x2   0.000 -0.533
x3   0.000 -0.576
x4   0.000 -0.540
x5  -0.492  0.000
x6  -0.287  0.000
x7  -0.481  0.000
x8  -0.666  0.000
x9   0.000  0.000
x10  0.000  0.000

 

Having fun learning sparse PCA!

Sparse PCA: reproduction of the synthetic example

原文:http://www.cnblogs.com/shalijiang/p/4077566.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!