首页 > 其他 > 详细

编程之美----不要被阶乘吓到

时间:2014-11-07 23:14:37      阅读:364      评论:0      收藏:0      [点我收藏+]

任一个正整数都能分解成质数的连乘,因此求N!末尾有多少个0,等于质因数分解之后5的个数,而求5的个数可以用如下代码实现:

bubuko.com,布布扣
ret =0;
while(N)
{
    ret += N/5;
    N/=5;
}
View Code

5的倍数贡献一个5,5的平方的倍数再贡献一个5,如此继续下去。。。。

问题二:求N!的二进制表示中最低位1的位置,等价于求N! 含有质因数2的个数加1,因为如果将N!表示成2的多少次幂乘以一个数,那么就可以表示成2的多少次幂+2的更多的次幂。于是将上面的代码稍微修改就可以用来求此问题,另外N!含有质因数2的个数,还等于N减去N的二进制表示中1的数目。假如N=11011,那么1101+110+11+1=(10000-1)—(1000-1)+(10-1)+(1-1)=11011-(N二进制表示中1的个数)。

 

相关题目:

给定整数n,判断它是否为2的方幂。可用(n>0&&((n&(n-1))==0)求解

编程之美----不要被阶乘吓到

原文:http://www.cnblogs.com/wen-ge/p/4082441.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!