本文地址是http://blog.csdn.net/zhujunxxxxx/article/details/40925687 转载请注明出处。作者联系邮箱 zhujunxxxxx@163.com
(Binary Sort Tree)又称二叉查找树(Binary Search Tree),亦称二叉搜索树。
它或者是一棵空树;或者是具有下列性质的二叉树:
(1)若左子树不空,则左子树上所有结点的值均小于它的根结点的值;
(2)若右子树不空,则右子树上所有结点的值均大于它的根结点的值;
(3)左、右子树也分别为二叉排序树;
/// <summary> /// 数组存储树的结构(还有一种是Node) /// </summary> private int[] data;//从1开始存储数据 /// <summary> /// 树的长度 /// </summary> private int len; /// <summary> /// 删除节点时用的一个临时的数据结构 /// </summary> private List<int> tmpList; public Tree() { //先初始化一个1w大小的数组 this.data = new int[100]; tmpList = new List<int>(); len = 0; }
/// <summary> /// 把节点插入树 /// </summary> public void Insert(int key) { if (len == 0) { data[1] = key; len++; } else { int index = 1; while (index <data.Length) { if (key < data[index]) { //拓展数组 if (LeftChild(index) >= data.Length) Expand(); //判断这个节点是否为空 if (data[LeftChild(index)] == 0) { data[LeftChild(index)] = key; len++; break; } else { index = LeftChild(index); } } else { //拓展数组 if (RightChild(index) >= data.Length) Expand(); //判断这个节点是否为空 if (data[RightChild(index)] == 0) { data[RightChild(index)] = key; len++; break; } else { index = RightChild(index); } } } } }
/// <summary> /// 删除树的节点 /// </summary> public int Delete(int key) { int value=-1; int index = Search(key); if (index != -1) { value=data[index]; Remove(index); } return value; } /// <summary> /// 移除一个节点,并重新构造树 /// </summary> /// <param name="index"></param> private void Remove(int index) { //设置要删除的值为0 data[index] = 0; //删除指定下标处的元素,并得到删除后的树(调整位置) List<int> it = PreInorderList();//得到前序遍历的迭代器 for (int i = 1; i < data.Length; i++)//将树清空 data[i] = 0; //把树给清空,长度也变为0 len = 0; foreach (int item in it) { Insert(item); } }
/// <summary> /// 先序遍历 /// </summary> public void PreOrder(int i) { if (i >= data.Length) return; if (data[i] != 0) { tmpList.Add(data[i]); } PreOrder(LeftChild(i)); PreOrder(RightChild(i)); }
/// <summary> /// 中序遍历 /// </summary> /// <param name="i"></param> public void InOrder(int i) { if (i >=data.Length) return; InOrder(LeftChild(i)); if (data[i] != 0) { Console.Write(data[i] + " "); } InOrder(RightChild(i)); }
/// <summary> /// 后续遍历 /// </summary> /// <param name="i"></param> public void PostOrder(int i) { if (i >= data.Length) return; PostOrder(LeftChild(i)); PostOrder(RightChild(i)); if (data[i] != 0) { Console.Write(data[i] + " "); } }
using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace Other { /// <summary> /// 二叉排序树(Binary Sort Tree) /// 二叉查找树(Binary Search Tree) /// </summary> public class Tree { /// <summary> /// 数组存储树的结构(还有一种是Node) /// </summary> private int[] data;//从1开始存储数据 /// <summary> /// 树的长度 /// </summary> private int len; /// <summary> /// 删除节点时用的一个临时的数据结构 /// </summary> private List<int> tmpList; public Tree() { //先初始化一个1w大小的数组 this.data = new int[100]; tmpList = new List<int>(); len = 0; } /// <summary> /// 把节点插入树 /// </summary> public void Insert(int key) { if (len == 0) { data[1] = key; len++; } else { int index = 1; while (index <data.Length) { if (key < data[index]) { //拓展数组 if (LeftChild(index) >= data.Length) Expand(); //判断这个节点是否为空 if (data[LeftChild(index)] == 0) { data[LeftChild(index)] = key; len++; break; } else { index = LeftChild(index); } } else { //拓展数组 if (RightChild(index) >= data.Length) Expand(); //判断这个节点是否为空 if (data[RightChild(index)] == 0) { data[RightChild(index)] = key; len++; break; } else { index = RightChild(index); } } } } } /// <summary> /// 删除树的节点 /// </summary> public int Delete(int key) { int value=-1; int index = Search(key); if (index != -1) { value=data[index]; Remove(index); } return value; } /// <summary> /// 移除一个节点,并重新构造树 /// </summary> /// <param name="index"></param> private void Remove(int index) { //设置要删除的值为0 data[index] = 0; //删除指定下标处的元素,并得到删除后的树(调整位置) List<int> it = PreInorderList();//得到前序遍历的迭代器 for (int i = 1; i < data.Length; i++)//将树清空 data[i] = 0; //把树给清空,长度也变为0 len = 0; foreach (int item in it) { Insert(item); } } /// <summary> /// 获取先序遍历的序列 /// </summary> /// <returns></returns> private List<int> PreInorderList() { //生成前序序列 PreOrder(1); List<int> tmp = tmpList; //重新把这个初始为空 tmpList = new List<int>(); return tmp; } /// <summary> /// 获取左孩子 /// </summary> /// <param name="i"></param> /// <returns></returns> private int LeftChild(int i) { return i * 2; } /// <summary> /// 获取右孩子 /// </summary> /// <param name="i"></param> /// <returns></returns> private int RightChild(int i) { return i * 2+1; } /// <summary> /// 当容量不够的时候拓展数组的大小 /// </summary> private void Expand() { //一次扩大两倍 int[] larger = new int[data.Length * 2]; for (int i = 1; i < data.Length; i++) { larger[i] = data[i]; } data = larger; } /// <summary> /// 查找树节点 /// </summary> public int Search(int key) { int index = 1; while (index < data.Length && data[index] != 0) { if (data[index] == key) return index; else if (key < data[index]) { index = LeftChild(index); } else { index = RightChild(index); } } return -1; } /// <summary> /// 输出树的结构 /// </summary> public override string ToString() { return null; } /// <summary> /// 先序遍历 /// </summary> public void PreOrder(int i) { if (i >= data.Length) return; if (data[i] != 0) { tmpList.Add(data[i]); } PreOrder(LeftChild(i)); PreOrder(RightChild(i)); } /// <summary> /// 中序遍历 /// </summary> /// <param name="i"></param> public void InOrder(int i) { if (i >=data.Length) return; InOrder(LeftChild(i)); if (data[i] != 0) { Console.Write(data[i] + " "); } InOrder(RightChild(i)); } /// <summary> /// 后续遍历 /// </summary> /// <param name="i"></param> public void PostOrder(int i) { if (i >= data.Length) return; PostOrder(LeftChild(i)); PostOrder(RightChild(i)); if (data[i] != 0) { Console.Write(data[i] + " "); } } } }
static void Main(string[] args) { Tree t = new Tree(); t.Insert(50); t.Insert(20); t.Insert(60); t.Insert(15); t.Insert(30); t.Insert(70); //从第一个位置开始 t.InOrder(1); Console.WriteLine(); t.Delete(20); t.InOrder(1); }
原文:http://blog.csdn.net/zhujunxxxxx/article/details/40925687